Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung

The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e24019-e24019
Hauptverfasser: Zheng, Weiling, Wang, Zhengyuan, Collins, John E, Andrews, Robert M, Stemple, Derek, Gong, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e24019
container_issue 8
container_start_page e24019
container_title PloS one
container_volume 6
creator Zheng, Weiling
Wang, Zhengyuan
Collins, John E
Andrews, Robert M
Stemple, Derek
Gong, Zhiyuan
description The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.
doi_str_mv 10.1371/journal.pone.0024019
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1307579416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476881403</galeid><doaj_id>oai_doaj_org_article_aa36e23c0a9a48f5aaae0bbc906daabd</doaj_id><sourcerecordid>A476881403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-3783fea591f13d7e3a7985f65743b39b1359c03cf6930108125c8729220c1d953</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguLFjEnTpM2NsAx-LCws-HUbTtPTToa0mU3a1fHXm3G6y1T2QnKRkDzvm5NzcpLkOSVLygr6buNG34Ndbl2PS0KynFD5IDmlkmULkRH28Gh9kjwJYUMIZ6UQj5OTjJZlwUR-mmxWrtuCh8HcYDp46IP2Zju4DlOI7ruAITV9bTQMmHbOoh4t-HTt4tq1u9Q16W-sPDQmrNPw03SVhbpGH9V12kHXgTXQp3bs26fJowZswGfTfJZ8__jh2-rz4vLq08Xq_HKhhaTDghUlaxC4pA1ldYEMClnyRvAiZxWTFWVcasJ0IyQjlJQ047osMpllRNNacnaWvDz4bq0LakpTUJSRghcypyISFweidrBRW2868DvlwKi_G863CvxgtEUFwARmTBOQkJcNBwAkVaUlETVAVUev99NtY9VhrbGPWbQz0_lJb9aqdTeKUZFxuQ_mzWTg3fWIYVCdCRqthR7dGFSsFCecUxLJV_-Q9z9uolqI8Zu-cfFavfdU53khypLmhEVqeQ8VR42d0fFLNSbuzwRvZ4LIDPhraGEMQV18_fL_7NWPOfv6iF0j2GEdnB0H4_owB_MDqL0LwWNzl2NK1L4jbrOh9h2hpo6IshfH9bkT3bYA-wOsqgec</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1307579416</pqid></control><display><type>article</type><title>Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheng, Weiling ; Wang, Zhengyuan ; Collins, John E ; Andrews, Robert M ; Stemple, Derek ; Gong, Zhiyuan</creator><contributor>Liu, Zhanjiang</contributor><creatorcontrib>Zheng, Weiling ; Wang, Zhengyuan ; Collins, John E ; Andrews, Robert M ; Stemple, Derek ; Gong, Zhiyuan ; Liu, Zhanjiang</creatorcontrib><description>The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0024019</identifier><identifier>PMID: 21887364</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Air Sacs - chemistry ; Air Sacs - physiology ; Analysis ; Animal tissues ; Animals ; Bioinformatics ; Biological evolution ; Biology ; Carassius auratus ; Cell adhesion ; Constitution ; Cytoskeleton ; Danio rerio ; Deoxyribonucleic acid ; DNA ; Embryogenesis ; Embryonic Development ; Embryonic growth stage ; Endoplasmic Reticulum ; Extracellular matrix ; Fish ; Gene expression ; Genes ; Genomes ; Genomics ; Homology ; Humans ; Lung - chemistry ; Lung - physiology ; Lungs ; Mammals ; Mice ; Ontology ; Ribonucleic acid ; RNA ; RNA, Messenger - analysis ; Transcription (Genetics) ; Tumors ; Zebrafish ; Zebrafish - genetics ; Zebrafish - physiology</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e24019-e24019</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Zheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zheng et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-3783fea591f13d7e3a7985f65743b39b1359c03cf6930108125c8729220c1d953</citedby><cites>FETCH-LOGICAL-c691t-3783fea591f13d7e3a7985f65743b39b1359c03cf6930108125c8729220c1d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21887364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Liu, Zhanjiang</contributor><creatorcontrib>Zheng, Weiling</creatorcontrib><creatorcontrib>Wang, Zhengyuan</creatorcontrib><creatorcontrib>Collins, John E</creatorcontrib><creatorcontrib>Andrews, Robert M</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Gong, Zhiyuan</creatorcontrib><title>Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.</description><subject>Air Sacs - chemistry</subject><subject>Air Sacs - physiology</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Carassius auratus</subject><subject>Cell adhesion</subject><subject>Constitution</subject><subject>Cytoskeleton</subject><subject>Danio rerio</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Embryogenesis</subject><subject>Embryonic Development</subject><subject>Embryonic growth stage</subject><subject>Endoplasmic Reticulum</subject><subject>Extracellular matrix</subject><subject>Fish</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homology</subject><subject>Humans</subject><subject>Lung - chemistry</subject><subject>Lung - physiology</subject><subject>Lungs</subject><subject>Mammals</subject><subject>Mice</subject><subject>Ontology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - analysis</subject><subject>Transcription (Genetics)</subject><subject>Tumors</subject><subject>Zebrafish</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguLFjEnTpM2NsAx-LCws-HUbTtPTToa0mU3a1fHXm3G6y1T2QnKRkDzvm5NzcpLkOSVLygr6buNG34Ndbl2PS0KynFD5IDmlkmULkRH28Gh9kjwJYUMIZ6UQj5OTjJZlwUR-mmxWrtuCh8HcYDp46IP2Zju4DlOI7ruAITV9bTQMmHbOoh4t-HTt4tq1u9Q16W-sPDQmrNPw03SVhbpGH9V12kHXgTXQp3bs26fJowZswGfTfJZ8__jh2-rz4vLq08Xq_HKhhaTDghUlaxC4pA1ldYEMClnyRvAiZxWTFWVcasJ0IyQjlJQ047osMpllRNNacnaWvDz4bq0LakpTUJSRghcypyISFweidrBRW2868DvlwKi_G863CvxgtEUFwARmTBOQkJcNBwAkVaUlETVAVUev99NtY9VhrbGPWbQz0_lJb9aqdTeKUZFxuQ_mzWTg3fWIYVCdCRqthR7dGFSsFCecUxLJV_-Q9z9uolqI8Zu-cfFavfdU53khypLmhEVqeQ8VR42d0fFLNSbuzwRvZ4LIDPhraGEMQV18_fL_7NWPOfv6iF0j2GEdnB0H4_owB_MDqL0LwWNzl2NK1L4jbrOh9h2hpo6IshfH9bkT3bYA-wOsqgec</recordid><startdate>20110826</startdate><enddate>20110826</enddate><creator>Zheng, Weiling</creator><creator>Wang, Zhengyuan</creator><creator>Collins, John E</creator><creator>Andrews, Robert M</creator><creator>Stemple, Derek</creator><creator>Gong, Zhiyuan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110826</creationdate><title>Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung</title><author>Zheng, Weiling ; Wang, Zhengyuan ; Collins, John E ; Andrews, Robert M ; Stemple, Derek ; Gong, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-3783fea591f13d7e3a7985f65743b39b1359c03cf6930108125c8729220c1d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air Sacs - chemistry</topic><topic>Air Sacs - physiology</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Carassius auratus</topic><topic>Cell adhesion</topic><topic>Constitution</topic><topic>Cytoskeleton</topic><topic>Danio rerio</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Embryogenesis</topic><topic>Embryonic Development</topic><topic>Embryonic growth stage</topic><topic>Endoplasmic Reticulum</topic><topic>Extracellular matrix</topic><topic>Fish</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homology</topic><topic>Humans</topic><topic>Lung - chemistry</topic><topic>Lung - physiology</topic><topic>Lungs</topic><topic>Mammals</topic><topic>Mice</topic><topic>Ontology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - analysis</topic><topic>Transcription (Genetics)</topic><topic>Tumors</topic><topic>Zebrafish</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Weiling</creatorcontrib><creatorcontrib>Wang, Zhengyuan</creatorcontrib><creatorcontrib>Collins, John E</creatorcontrib><creatorcontrib>Andrews, Robert M</creatorcontrib><creatorcontrib>Stemple, Derek</creatorcontrib><creatorcontrib>Gong, Zhiyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Weiling</au><au>Wang, Zhengyuan</au><au>Collins, John E</au><au>Andrews, Robert M</au><au>Stemple, Derek</au><au>Gong, Zhiyuan</au><au>Liu, Zhanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-26</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e24019</spage><epage>e24019</epage><pages>e24019-e24019</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The fish swimbladder is a unique organ in vertebrate evolution and it functions for regulating buoyancy in most teleost species. It has long been postulated as a homolog of the tetrapod lung, but the molecular evidence is scarce. In order to understand the molecular function of swimbladder as well as its relationship with lungs in tetrapods, transcriptomic analyses of zebrafish swimbladder were carried out by RNA-seq. Gene ontology classification showed that genes in cytoskeleton and endoplasmic reticulum were enriched in the swimbladder. Further analyses depicted gene sets and pathways closely related to cytoskeleton constitution and regulation, cell adhesion, and extracellular matrix. Several prominent transcription factor genes in the swimbladder including hoxc4a, hoxc6a, hoxc8a and foxf1 were identified and their expressions in developing swimbladder during embryogenesis were confirmed. By comparison of enriched transcripts in the swimbladder with those in human and mouse lungs, we established the resemblance of transcriptome of the zebrafish swimbladder and mammalian lungs. Based on the transcriptomic data of zebrafish swimbladder, the predominant functions of swimbladder are in its epithelial and muscular tissues. Our comparative analyses also provide molecular evidence of the relatedness of the fish swimbladder and mammalian lung.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21887364</pmid><doi>10.1371/journal.pone.0024019</doi><tpages>e24019</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e24019-e24019
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1307579416
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Air Sacs - chemistry
Air Sacs - physiology
Analysis
Animal tissues
Animals
Bioinformatics
Biological evolution
Biology
Carassius auratus
Cell adhesion
Constitution
Cytoskeleton
Danio rerio
Deoxyribonucleic acid
DNA
Embryogenesis
Embryonic Development
Embryonic growth stage
Endoplasmic Reticulum
Extracellular matrix
Fish
Gene expression
Genes
Genomes
Genomics
Homology
Humans
Lung - chemistry
Lung - physiology
Lungs
Mammals
Mice
Ontology
Ribonucleic acid
RNA
RNA, Messenger - analysis
Transcription (Genetics)
Tumors
Zebrafish
Zebrafish - genetics
Zebrafish - physiology
title Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptome%20analyses%20indicate%20molecular%20homology%20of%20zebrafish%20swimbladder%20and%20mammalian%20lung&rft.jtitle=PloS%20one&rft.au=Zheng,%20Weiling&rft.date=2011-08-26&rft.volume=6&rft.issue=8&rft.spage=e24019&rft.epage=e24019&rft.pages=e24019-e24019&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0024019&rft_dat=%3Cgale_plos_%3EA476881403%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1307579416&rft_id=info:pmid/21887364&rft_galeid=A476881403&rft_doaj_id=oai_doaj_org_article_aa36e23c0a9a48f5aaae0bbc906daabd&rfr_iscdi=true