Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus

Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e23247-e23247
Hauptverfasser: McGee, Charles E, Tsetsarkin, Konstantin A, Guy, Bruno, Lang, Jean, Plante, Kenneth, Vanlandingham, Dana L, Higgs, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e23247
container_issue 8
container_start_page e23247
container_title PloS one
container_volume 6
creator McGee, Charles E
Tsetsarkin, Konstantin A
Guy, Bruno
Lang, Jean
Plante, Kenneth
Vanlandingham, Dana L
Higgs, Stephen
description Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.
doi_str_mv 10.1371/journal.pone.0023247
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1307257913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476883319</galeid><doaj_id>oai_doaj_org_article_d64a6bd125754dbfb3f0dd792ed423e1</doaj_id><sourcerecordid>A476883319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-5af8dc41a69b38bd0241974f3ba108051384cfd98b3a6f0f65d49d554d1d6ae23</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQfFi13xNJnMjlOLHQqFg1duQmSS7WWeTbT62zr83607LjvRCcpFw8rzvSU5yiuIlBHOIa_hh7ZK3op9vnVVzABBGpH5UnMIGoxlFAD8-Wp8Uz0JYA1BhRunT4gRBhigi-LTg11G0pjdxKJ0uB9X37rbUaqd8uTM-hTJZmddedW7TGiui80O59SqE5FUpQpnjW-GVLG9NXJXdyvxKdpnsIA7658UTLfqgXozzWfHj86fvF19nl1dfFhfnl7OONjDOKqGZ7AgUtGkxayVABDY10bgVEDBQQcxIp2XDWiyoBppWkjSyqoiEkgqF8Fnx-uC77V3gY20ChxjUqKobiDOxOBDSiTXferMRfuBOGP434PySCx9N1ysuKRG0lTArc4ZWt1gDKesGKUkQVjB7fRyzpXajZKds9KKfmE53rFnxpdtxDElDCckG70YD726SCpFvTOhy9YVVLgXOGAKMVrTJ5Jt_yIcvN1JLkc9vrHY5bbf35OekpoxhDPde8weoPKTamC7_I21yfCJ4PxFkJqrfcSlSCHxx_e3_2aufU_btEbtSoo-r4PoUjbNhCpID2HkXglf6vsYQ8H0b3FWD79uAj22QZa-O3-dedPfv8R_8BAQV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1307257913</pqid></control><display><type>article</type><title>Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>McGee, Charles E ; Tsetsarkin, Konstantin A ; Guy, Bruno ; Lang, Jean ; Plante, Kenneth ; Vanlandingham, Dana L ; Higgs, Stephen</creator><contributor>Aguilar, Patricia V.</contributor><creatorcontrib>McGee, Charles E ; Tsetsarkin, Konstantin A ; Guy, Bruno ; Lang, Jean ; Plante, Kenneth ; Vanlandingham, Dana L ; Higgs, Stephen ; Aguilar, Patricia V.</creatorcontrib><description>Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023247</identifier><identifier>PMID: 21826243</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aedes albopictus ; Amino acid sequence ; Analysis ; Arachnids ; Biology ; Blotting, Northern ; Chikungunya virus ; Chikungunya virus - genetics ; Culicidae ; Dengue fever ; E3 gene ; Encephalitis ; Envelope protein ; Fever ; Flavivirus ; Gene sequencing ; Genetic analysis ; Genome, Viral - genetics ; Genomes ; Genomics ; Hepatitis ; Homology ; Infection ; Infections ; Lipids ; Medicine ; Mosquitoes ; Pathology ; Phylogeny ; Proteins ; Recombinants ; Recombination ; Recombination, Genetic - genetics ; Ribonucleic acid ; RNA ; RNA viruses ; Superinfection ; Vaccination ; Vaccines ; Vector-borne diseases ; Viral envelope proteins ; Virology ; Viruses ; West Nile virus ; World War II ; Yellow fever ; Yellow fever virus - genetics</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e23247-e23247</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 McGee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>McGee et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-5af8dc41a69b38bd0241974f3ba108051384cfd98b3a6f0f65d49d554d1d6ae23</citedby><cites>FETCH-LOGICAL-c691t-5af8dc41a69b38bd0241974f3ba108051384cfd98b3a6f0f65d49d554d1d6ae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149644/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149644/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21826243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aguilar, Patricia V.</contributor><creatorcontrib>McGee, Charles E</creatorcontrib><creatorcontrib>Tsetsarkin, Konstantin A</creatorcontrib><creatorcontrib>Guy, Bruno</creatorcontrib><creatorcontrib>Lang, Jean</creatorcontrib><creatorcontrib>Plante, Kenneth</creatorcontrib><creatorcontrib>Vanlandingham, Dana L</creatorcontrib><creatorcontrib>Higgs, Stephen</creatorcontrib><title>Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.</description><subject>Aedes albopictus</subject><subject>Amino acid sequence</subject><subject>Analysis</subject><subject>Arachnids</subject><subject>Biology</subject><subject>Blotting, Northern</subject><subject>Chikungunya virus</subject><subject>Chikungunya virus - genetics</subject><subject>Culicidae</subject><subject>Dengue fever</subject><subject>E3 gene</subject><subject>Encephalitis</subject><subject>Envelope protein</subject><subject>Fever</subject><subject>Flavivirus</subject><subject>Gene sequencing</subject><subject>Genetic analysis</subject><subject>Genome, Viral - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hepatitis</subject><subject>Homology</subject><subject>Infection</subject><subject>Infections</subject><subject>Lipids</subject><subject>Medicine</subject><subject>Mosquitoes</subject><subject>Pathology</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Recombinants</subject><subject>Recombination</subject><subject>Recombination, Genetic - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA viruses</subject><subject>Superinfection</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Vector-borne diseases</subject><subject>Viral envelope proteins</subject><subject>Virology</subject><subject>Viruses</subject><subject>West Nile virus</subject><subject>World War II</subject><subject>Yellow fever</subject><subject>Yellow fever virus - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQfFi13xNJnMjlOLHQqFg1duQmSS7WWeTbT62zr83607LjvRCcpFw8rzvSU5yiuIlBHOIa_hh7ZK3op9vnVVzABBGpH5UnMIGoxlFAD8-Wp8Uz0JYA1BhRunT4gRBhigi-LTg11G0pjdxKJ0uB9X37rbUaqd8uTM-hTJZmddedW7TGiui80O59SqE5FUpQpnjW-GVLG9NXJXdyvxKdpnsIA7658UTLfqgXozzWfHj86fvF19nl1dfFhfnl7OONjDOKqGZ7AgUtGkxayVABDY10bgVEDBQQcxIp2XDWiyoBppWkjSyqoiEkgqF8Fnx-uC77V3gY20ChxjUqKobiDOxOBDSiTXferMRfuBOGP434PySCx9N1ysuKRG0lTArc4ZWt1gDKesGKUkQVjB7fRyzpXajZKds9KKfmE53rFnxpdtxDElDCckG70YD726SCpFvTOhy9YVVLgXOGAKMVrTJ5Jt_yIcvN1JLkc9vrHY5bbf35OekpoxhDPde8weoPKTamC7_I21yfCJ4PxFkJqrfcSlSCHxx_e3_2aufU_btEbtSoo-r4PoUjbNhCpID2HkXglf6vsYQ8H0b3FWD79uAj22QZa-O3-dedPfv8R_8BAQV</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>McGee, Charles E</creator><creator>Tsetsarkin, Konstantin A</creator><creator>Guy, Bruno</creator><creator>Lang, Jean</creator><creator>Plante, Kenneth</creator><creator>Vanlandingham, Dana L</creator><creator>Higgs, Stephen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110803</creationdate><title>Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus</title><author>McGee, Charles E ; Tsetsarkin, Konstantin A ; Guy, Bruno ; Lang, Jean ; Plante, Kenneth ; Vanlandingham, Dana L ; Higgs, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-5af8dc41a69b38bd0241974f3ba108051384cfd98b3a6f0f65d49d554d1d6ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aedes albopictus</topic><topic>Amino acid sequence</topic><topic>Analysis</topic><topic>Arachnids</topic><topic>Biology</topic><topic>Blotting, Northern</topic><topic>Chikungunya virus</topic><topic>Chikungunya virus - genetics</topic><topic>Culicidae</topic><topic>Dengue fever</topic><topic>E3 gene</topic><topic>Encephalitis</topic><topic>Envelope protein</topic><topic>Fever</topic><topic>Flavivirus</topic><topic>Gene sequencing</topic><topic>Genetic analysis</topic><topic>Genome, Viral - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hepatitis</topic><topic>Homology</topic><topic>Infection</topic><topic>Infections</topic><topic>Lipids</topic><topic>Medicine</topic><topic>Mosquitoes</topic><topic>Pathology</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Recombinants</topic><topic>Recombination</topic><topic>Recombination, Genetic - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA viruses</topic><topic>Superinfection</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Vector-borne diseases</topic><topic>Viral envelope proteins</topic><topic>Virology</topic><topic>Viruses</topic><topic>West Nile virus</topic><topic>World War II</topic><topic>Yellow fever</topic><topic>Yellow fever virus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGee, Charles E</creatorcontrib><creatorcontrib>Tsetsarkin, Konstantin A</creatorcontrib><creatorcontrib>Guy, Bruno</creatorcontrib><creatorcontrib>Lang, Jean</creatorcontrib><creatorcontrib>Plante, Kenneth</creatorcontrib><creatorcontrib>Vanlandingham, Dana L</creatorcontrib><creatorcontrib>Higgs, Stephen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGee, Charles E</au><au>Tsetsarkin, Konstantin A</au><au>Guy, Bruno</au><au>Lang, Jean</au><au>Plante, Kenneth</au><au>Vanlandingham, Dana L</au><au>Higgs, Stephen</au><au>Aguilar, Patricia V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-03</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e23247</spage><epage>e23247</epage><pages>e23247-e23247</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21826243</pmid><doi>10.1371/journal.pone.0023247</doi><tpages>e23247</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e23247-e23247
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1307257913
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aedes albopictus
Amino acid sequence
Analysis
Arachnids
Biology
Blotting, Northern
Chikungunya virus
Chikungunya virus - genetics
Culicidae
Dengue fever
E3 gene
Encephalitis
Envelope protein
Fever
Flavivirus
Gene sequencing
Genetic analysis
Genome, Viral - genetics
Genomes
Genomics
Hepatitis
Homology
Infection
Infections
Lipids
Medicine
Mosquitoes
Pathology
Phylogeny
Proteins
Recombinants
Recombination
Recombination, Genetic - genetics
Ribonucleic acid
RNA
RNA viruses
Superinfection
Vaccination
Vaccines
Vector-borne diseases
Viral envelope proteins
Virology
Viruses
West Nile virus
World War II
Yellow fever
Yellow fever virus - genetics
title Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20yellow%20fever%20virus%20under%20recombinatory%20pressure%20as%20compared%20with%20chikungunya%20virus&rft.jtitle=PloS%20one&rft.au=McGee,%20Charles%20E&rft.date=2011-08-03&rft.volume=6&rft.issue=8&rft.spage=e23247&rft.epage=e23247&rft.pages=e23247-e23247&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023247&rft_dat=%3Cgale_plos_%3EA476883319%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1307257913&rft_id=info:pmid/21826243&rft_galeid=A476883319&rft_doaj_id=oai_doaj_org_article_d64a6bd125754dbfb3f0dd792ed423e1&rfr_iscdi=true