Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway

In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e22901-e22901
Hauptverfasser: Li, Yue, Luo, Jianmin, Lau, Wui-Man, Zheng, Guoqing, Fu, Shuping, Wang, Ting-Ting, Zeng, He-Ping, So, Kwok-Fai, Chung, Sookja Kim, Tong, Yao, Liu, Kejian, Shen, Jiangang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22901
container_issue 8
container_start_page e22901
container_title PloS one
container_volume 6
creator Li, Yue
Luo, Jianmin
Lau, Wui-Man
Zheng, Guoqing
Fu, Shuping
Wang, Ting-Ting
Zeng, He-Ping
So, Kwok-Fai
Chung, Sookja Kim
Tong, Yao
Liu, Kejian
Shen, Jiangang
description In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O₂ for 24 h and then switched to 21% O₂ for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O₂. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.
doi_str_mv 10.1371/journal.pone.0022901
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306897822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476883345</galeid><doaj_id>oai_doaj_org_article_1a0c9fc3019040b3bb40a1e627eeaa00</doaj_id><sourcerecordid>A476883345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-36b3ccde0ed1f85c7ea76dfa6d20f5df51b8ed67e13722cc7adb96de204cfc23</originalsourceid><addsrcrecordid>eNqNk99q2zAUxs3YWLtubzA2wWBjF0n1x5btm0IpbRcoFLbSWyFLR46KI3mSnS3PsJee3KSlGb0YMkjo_M53rE86Wfae4DlhJTm-82Nwspv33sEcY0prTF5kh6RmdMYpZi-frA-yNzHeYVywivPX2QElFeWU8MPsz5lcg--smxHUd3ITkUQqjMrKDgXfAbIufUvb2MG6FjkYg09VkbbGQAA3WDlY75A397EUiQOsjvvgW3B28AEp6LqI1lai2_PLCxRtm_KT1kxDD04nCdTLYflLbt5mr4zsIrzbzUfZzcX5zdm32dX15eLs9GqmeE2GGeMNU0oDBk1MVagSZMm1kVxTbAptCtJUoHkJySZKlSqlbmqugeJcGUXZUfZxK9t3PoqdjVEQhnlVlxWdiMWW0F7eiT7YlQwb4aUV9xs-tEKGwaoOBJFY1UYxTGqc44Y1TY4lAU5LACkxTlonu2pjswKt0nmTS3ui-xFnl6L1a8FIXk93d5R92QkE_3OEOIiVjZOp0oEfo6gqiquyKKpEfvqHfP5wO6qV6f-tMz6VVZOmOM1LXlWM5UWi5s9QaWhYWZWenLFpfy_h615CYgb4PbRyjFEsfnz_f_b6dp_9_IRdguyGZfTdOL26uA_mW1AFH2MA8-gxwWLqmAc3xNQxYtcxKe3D0_t5THpoEfYX5_gUWg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306897822</pqid></control><display><type>article</type><title>Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Yue ; Luo, Jianmin ; Lau, Wui-Man ; Zheng, Guoqing ; Fu, Shuping ; Wang, Ting-Ting ; Zeng, He-Ping ; So, Kwok-Fai ; Chung, Sookja Kim ; Tong, Yao ; Liu, Kejian ; Shen, Jiangang</creator><creatorcontrib>Li, Yue ; Luo, Jianmin ; Lau, Wui-Man ; Zheng, Guoqing ; Fu, Shuping ; Wang, Ting-Ting ; Zeng, He-Ping ; So, Kwok-Fai ; Chung, Sookja Kim ; Tong, Yao ; Liu, Kejian ; Shen, Jiangang</creatorcontrib><description>In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O₂ for 24 h and then switched to 21% O₂ for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O₂. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022901</identifier><identifier>PMID: 21826216</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AKT protein ; Animals ; Biology ; Blotting, Western ; Caveolin ; Caveolin 1 - genetics ; Caveolin 1 - metabolism ; Caveolin-1 ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell growth ; Cells (biology) ; Dentate gyrus ; Differentiation ; Embryos ; Enzyme-Linked Immunosorbent Assay ; Hippocampus ; Hypoxia ; Immunohistochemistry ; Invaginations ; Kinases ; Medicine ; Membrane proteins ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Neural stem cells ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neurons ; Phosphorylation ; Progenitor cells ; Ribonucleic acid ; RNA ; RNA, Small Interfering ; Rodents ; Scaffolding ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - physiology ; Signaling ; siRNA ; Stat3 protein ; Stem cells ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - genetics ; Vascular Endothelial Growth Factor A - metabolism</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e22901-e22901</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Li et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-36b3ccde0ed1f85c7ea76dfa6d20f5df51b8ed67e13722cc7adb96de204cfc23</citedby><cites>FETCH-LOGICAL-c691t-36b3ccde0ed1f85c7ea76dfa6d20f5df51b8ed67e13722cc7adb96de204cfc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149620/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21826216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Lau, Wui-Man</creatorcontrib><creatorcontrib>Zheng, Guoqing</creatorcontrib><creatorcontrib>Fu, Shuping</creatorcontrib><creatorcontrib>Wang, Ting-Ting</creatorcontrib><creatorcontrib>Zeng, He-Ping</creatorcontrib><creatorcontrib>So, Kwok-Fai</creatorcontrib><creatorcontrib>Chung, Sookja Kim</creatorcontrib><creatorcontrib>Tong, Yao</creatorcontrib><creatorcontrib>Liu, Kejian</creatorcontrib><creatorcontrib>Shen, Jiangang</creatorcontrib><title>Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O₂ for 24 h and then switched to 21% O₂ for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O₂. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.</description><subject>AKT protein</subject><subject>Animals</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Caveolin</subject><subject>Caveolin 1 - genetics</subject><subject>Caveolin 1 - metabolism</subject><subject>Caveolin-1</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell growth</subject><subject>Cells (biology)</subject><subject>Dentate gyrus</subject><subject>Differentiation</subject><subject>Embryos</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Hippocampus</subject><subject>Hypoxia</subject><subject>Immunohistochemistry</subject><subject>Invaginations</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Neural stem cells</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurons</subject><subject>Phosphorylation</subject><subject>Progenitor cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering</subject><subject>Rodents</subject><subject>Scaffolding</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Stat3 protein</subject><subject>Stem cells</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99q2zAUxs3YWLtubzA2wWBjF0n1x5btm0IpbRcoFLbSWyFLR46KI3mSnS3PsJee3KSlGb0YMkjo_M53rE86Wfae4DlhJTm-82Nwspv33sEcY0prTF5kh6RmdMYpZi-frA-yNzHeYVywivPX2QElFeWU8MPsz5lcg--smxHUd3ITkUQqjMrKDgXfAbIufUvb2MG6FjkYg09VkbbGQAA3WDlY75A397EUiQOsjvvgW3B28AEp6LqI1lai2_PLCxRtm_KT1kxDD04nCdTLYflLbt5mr4zsIrzbzUfZzcX5zdm32dX15eLs9GqmeE2GGeMNU0oDBk1MVagSZMm1kVxTbAptCtJUoHkJySZKlSqlbmqugeJcGUXZUfZxK9t3PoqdjVEQhnlVlxWdiMWW0F7eiT7YlQwb4aUV9xs-tEKGwaoOBJFY1UYxTGqc44Y1TY4lAU5LACkxTlonu2pjswKt0nmTS3ui-xFnl6L1a8FIXk93d5R92QkE_3OEOIiVjZOp0oEfo6gqiquyKKpEfvqHfP5wO6qV6f-tMz6VVZOmOM1LXlWM5UWi5s9QaWhYWZWenLFpfy_h615CYgb4PbRyjFEsfnz_f_b6dp_9_IRdguyGZfTdOL26uA_mW1AFH2MA8-gxwWLqmAc3xNQxYtcxKe3D0_t5THpoEfYX5_gUWg</recordid><startdate>20110803</startdate><enddate>20110803</enddate><creator>Li, Yue</creator><creator>Luo, Jianmin</creator><creator>Lau, Wui-Man</creator><creator>Zheng, Guoqing</creator><creator>Fu, Shuping</creator><creator>Wang, Ting-Ting</creator><creator>Zeng, He-Ping</creator><creator>So, Kwok-Fai</creator><creator>Chung, Sookja Kim</creator><creator>Tong, Yao</creator><creator>Liu, Kejian</creator><creator>Shen, Jiangang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110803</creationdate><title>Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway</title><author>Li, Yue ; Luo, Jianmin ; Lau, Wui-Man ; Zheng, Guoqing ; Fu, Shuping ; Wang, Ting-Ting ; Zeng, He-Ping ; So, Kwok-Fai ; Chung, Sookja Kim ; Tong, Yao ; Liu, Kejian ; Shen, Jiangang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-36b3ccde0ed1f85c7ea76dfa6d20f5df51b8ed67e13722cc7adb96de204cfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>AKT protein</topic><topic>Animals</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Caveolin</topic><topic>Caveolin 1 - genetics</topic><topic>Caveolin 1 - metabolism</topic><topic>Caveolin-1</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell growth</topic><topic>Cells (biology)</topic><topic>Dentate gyrus</topic><topic>Differentiation</topic><topic>Embryos</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Hippocampus</topic><topic>Hypoxia</topic><topic>Immunohistochemistry</topic><topic>Invaginations</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Neural stem cells</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurons</topic><topic>Phosphorylation</topic><topic>Progenitor cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering</topic><topic>Rodents</topic><topic>Scaffolding</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Stat3 protein</topic><topic>Stem cells</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Lau, Wui-Man</creatorcontrib><creatorcontrib>Zheng, Guoqing</creatorcontrib><creatorcontrib>Fu, Shuping</creatorcontrib><creatorcontrib>Wang, Ting-Ting</creatorcontrib><creatorcontrib>Zeng, He-Ping</creatorcontrib><creatorcontrib>So, Kwok-Fai</creatorcontrib><creatorcontrib>Chung, Sookja Kim</creatorcontrib><creatorcontrib>Tong, Yao</creatorcontrib><creatorcontrib>Liu, Kejian</creatorcontrib><creatorcontrib>Shen, Jiangang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Luo, Jianmin</au><au>Lau, Wui-Man</au><au>Zheng, Guoqing</au><au>Fu, Shuping</au><au>Wang, Ting-Ting</au><au>Zeng, He-Ping</au><au>So, Kwok-Fai</au><au>Chung, Sookja Kim</au><au>Tong, Yao</au><au>Liu, Kejian</au><au>Shen, Jiangang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-03</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e22901</spage><epage>e22901</epage><pages>e22901-e22901</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the present study, we aim to elucidate the roles of caveolin-1(Cav-1), a 22 kDa protein in plasma membrane invaginations, in modulating neuronal differentiation of neural progenitor cells (NPCs). In the hippocampal dentate gyrus, we found that Cav-1 knockout mice revealed remarkably higher levels of vascular endothelial growth factor (VEGF) and the more abundant formation of newborn neurons than wild type mice. We then studied the potential mechanisms of Cav-1 in modulating VEGF signaling and neuronal differentiation in isolated cultured NPCs under normoxic and hypoxic conditions. Hypoxic embryonic rat NPCs were exposed to 1% O₂ for 24 h and then switched to 21% O₂ for 1, 3, 7 and 14 days whereas normoxic NPCs were continuously cultured with 21% O₂. Compared with normoxic NPCs, hypoxic NPCs had down-regulated expression of Cav-1 and up-regulated VEGF expression and p44/42MAPK phosphorylation, and enhanced neuronal differentiation. We further studied the roles of Cav-1 in inhibiting neuronal differentiation by using Cav-1 scaffolding domain peptide and Cav-1-specific small interfering RNA. In both normoxic and hypoxic NPCs, Cav-1 peptide markedly down-regulated the expressions of VEGF and flk1, decreased the phosphorylations of p44/42MAPK, Akt and Stat3, and inhibited neuronal differentiation, whereas the knockdown of Cav-1 promoted the expression of VEGF, phosphorylations of p44/42MAPK, Akt and Stat3, and stimulated neuronal differentiation. Moreover, the enhanced phosphorylations of p44/42MAPK, Akt and Stat3, and neuronal differentiation were abolished by co-treatment of VEGF inhibitor V1. These results provide strong evidence to prove that Cav-1 can inhibit neuronal differentiation via down-regulations of VEGF, p44/42MAPK, Akt and Stat3 signaling pathways, and that VEGF signaling is a crucial target of Cav-1. The hypoxia-induced down-regulation of Cav-1 contributes to enhanced neuronal differentiation in NPCs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21826216</pmid><doi>10.1371/journal.pone.0022901</doi><tpages>e22901</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e22901-e22901
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1306897822
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects AKT protein
Animals
Biology
Blotting, Western
Caveolin
Caveolin 1 - genetics
Caveolin 1 - metabolism
Caveolin-1
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell growth
Cells (biology)
Dentate gyrus
Differentiation
Embryos
Enzyme-Linked Immunosorbent Assay
Hippocampus
Hypoxia
Immunohistochemistry
Invaginations
Kinases
Medicine
Membrane proteins
Mice
Mice, Inbred C57BL
Mice, Knockout
Neural stem cells
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurons
Phosphorylation
Progenitor cells
Ribonucleic acid
RNA
RNA, Small Interfering
Rodents
Scaffolding
Signal transduction
Signal Transduction - genetics
Signal Transduction - physiology
Signaling
siRNA
Stat3 protein
Stem cells
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - genetics
Vascular Endothelial Growth Factor A - metabolism
title Caveolin-1 plays a crucial role in inhibiting neuronal differentiation of neural stem/progenitor cells via VEGF signaling-dependent pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A14%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caveolin-1%20plays%20a%20crucial%20role%20in%20inhibiting%20neuronal%20differentiation%20of%20neural%20stem/progenitor%20cells%20via%20VEGF%20signaling-dependent%20pathway&rft.jtitle=PloS%20one&rft.au=Li,%20Yue&rft.date=2011-08-03&rft.volume=6&rft.issue=8&rft.spage=e22901&rft.epage=e22901&rft.pages=e22901-e22901&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022901&rft_dat=%3Cgale_plos_%3EA476883345%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306897822&rft_id=info:pmid/21826216&rft_galeid=A476883345&rft_doaj_id=oai_doaj_org_article_1a0c9fc3019040b3bb40a1e627eeaa00&rfr_iscdi=true