p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo

The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-08, Vol.6 (8), p.e22183-e22183
Hauptverfasser: Kim, Sunyoung, Balakrishnan, Sri Kripa, Gross, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22183
container_issue 8
container_start_page e22183
container_title PloS one
container_volume 6
creator Kim, Sunyoung
Balakrishnan, Sri Kripa
Gross, David S
description The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53's ability to affect transcription in the context of its DNA-binding activity. How p53 regulates transcriptional output independent of DNA binding is less well understood. Here we provide evidence that human p53 can physically interact with the large subunit of RNA polymerase II (Pol II) both in in vitro interaction assays and in whole cell extracts, and that this interaction is mediated (at least in part) through p53's core DNA-binding domain and the Ser5-phosphorylated CTD of Pol II. Ectopic expression of p53, combined with mutations in transcription elongation factors or exposure to drugs that inhibit Pol II elongation, elicit sickness or lethality in yeast cells. These phenotypes are suppressed by oncogenic point mutations within p53's core domain. The growth phenotypes raise the possibility that p53 impairs Pol II elongation. Consistent with this, a p53-dependent increase in Pol II density is seen at constitutively expressed genes without a concomitant increase in transcript accumulation. Additionally, p53-expressing yeast strains exhibit reduced transcriptional processivity at an episomal reporter gene; this inhibitory activity is abolished by a core domain point mutation. Our results suggest a novel mechanism by which p53 can regulate gene transcription, and a new biological function for its core domain that is susceptible to inactivation by oncogenic point mutations.
doi_str_mv 10.1371/journal.pone.0022183
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306891573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476883254</galeid><doaj_id>oai_doaj_org_article_7b134375e1b842b29f49084c68b64342</doaj_id><sourcerecordid>A476883254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-2d137358ca02317f7952b710054b8af2deee89a8e6f66a7d91f5d4ddb4bf18793</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLk1TV-EYfFSWFxZL68hTdKZLG3TTdLR-fZmnO4ylX2QPCSc_M7_XJKTZc8RXCJSoHfXbvS9bJeD680SQowRJw-yU1QSvGAYkodH55PsSQjXEOaEM_Y4O0ksLhlkp5kecgKqPhovVQzgl40bcPVlBQbX7rpkDAZUFYgb78b1BtiEKOcN0K6Ttgey18B2g7Q-gK-u3aODd8qEYLc27kBCtnbrnmaPGtkG82zaz7IfHz98P_-8uLj8VJ2vLhaKlSgusE6FkZwrCTFBRVOUOa4LlNKmNZcN1sYYXkpuWMOYLHSJmlxTrWtaN4gXJTnLXh50h9YFMTUoCEQg4yXKC5KI6kBoJ6_F4G0n_U44acVfg_NrIX20qjWiqBGhpMgNqjnFNS4bWkJOFeM1o4TipPV-ijbWndHK9NHLdiY6v-ntRqzdVhCUQ0J4EngzCXh3M5oQRWeDMm0re-PGIDgnEHKI9qFe_UPeX9xErWXK3_aNS2HVXlOsaMGSHM5popb3UGlp01mVPlNjk33m8HbmkJhofse1HEMQ1ber_2cvf87Z10fsxsg2boJrx2hdH-YgPYDKuxC8ae56jKDYz8JtN8R-FsQ0C8ntxfH73Dndfn7yB4BYAik</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306891573</pqid></control><display><type>article</type><title>p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Sunyoung ; Balakrishnan, Sri Kripa ; Gross, David S</creator><contributor>Ott, Melanie</contributor><creatorcontrib>Kim, Sunyoung ; Balakrishnan, Sri Kripa ; Gross, David S ; Ott, Melanie</creatorcontrib><description>The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53's ability to affect transcription in the context of its DNA-binding activity. How p53 regulates transcriptional output independent of DNA binding is less well understood. Here we provide evidence that human p53 can physically interact with the large subunit of RNA polymerase II (Pol II) both in in vitro interaction assays and in whole cell extracts, and that this interaction is mediated (at least in part) through p53's core DNA-binding domain and the Ser5-phosphorylated CTD of Pol II. Ectopic expression of p53, combined with mutations in transcription elongation factors or exposure to drugs that inhibit Pol II elongation, elicit sickness or lethality in yeast cells. These phenotypes are suppressed by oncogenic point mutations within p53's core domain. The growth phenotypes raise the possibility that p53 impairs Pol II elongation. Consistent with this, a p53-dependent increase in Pol II density is seen at constitutively expressed genes without a concomitant increase in transcript accumulation. Additionally, p53-expressing yeast strains exhibit reduced transcriptional processivity at an episomal reporter gene; this inhibitory activity is abolished by a core domain point mutation. Our results suggest a novel mechanism by which p53 can regulate gene transcription, and a new biological function for its core domain that is susceptible to inactivation by oncogenic point mutations.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022183</identifier><identifier>PMID: 21829606</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Binding ; Binding sites ; Biochemistry ; Biology ; Biosynthesis ; Cell cycle ; Deactivation ; Dehydrogenases ; Deoxyribonucleic acid ; DNA ; DNA binding ; DNA-directed RNA polymerase ; Ectopic expression ; Elongation ; Gene expression ; Gene mutation ; Genes ; Genetic aspects ; Genomes ; Genotoxicity ; Health sciences ; Inactivation ; Lethality ; Molecular biology ; Mutation ; p53 Protein ; Peptides ; Phosphorylation ; Point Mutation ; Protein Binding ; Reporter gene ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA polymerase II ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Saccharomyces cerevisiae - genetics ; Transcription (Genetics) ; Transcription factors ; Tumor proteins ; Tumor suppressor genes ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Yeast</subject><ispartof>PloS one, 2011-08, Vol.6 (8), p.e22183-e22183</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kim et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-2d137358ca02317f7952b710054b8af2deee89a8e6f66a7d91f5d4ddb4bf18793</citedby><cites>FETCH-LOGICAL-c691t-2d137358ca02317f7952b710054b8af2deee89a8e6f66a7d91f5d4ddb4bf18793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150338/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150338/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ott, Melanie</contributor><creatorcontrib>Kim, Sunyoung</creatorcontrib><creatorcontrib>Balakrishnan, Sri Kripa</creatorcontrib><creatorcontrib>Gross, David S</creatorcontrib><title>p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53's ability to affect transcription in the context of its DNA-binding activity. How p53 regulates transcriptional output independent of DNA binding is less well understood. Here we provide evidence that human p53 can physically interact with the large subunit of RNA polymerase II (Pol II) both in in vitro interaction assays and in whole cell extracts, and that this interaction is mediated (at least in part) through p53's core DNA-binding domain and the Ser5-phosphorylated CTD of Pol II. Ectopic expression of p53, combined with mutations in transcription elongation factors or exposure to drugs that inhibit Pol II elongation, elicit sickness or lethality in yeast cells. These phenotypes are suppressed by oncogenic point mutations within p53's core domain. The growth phenotypes raise the possibility that p53 impairs Pol II elongation. Consistent with this, a p53-dependent increase in Pol II density is seen at constitutively expressed genes without a concomitant increase in transcript accumulation. Additionally, p53-expressing yeast strains exhibit reduced transcriptional processivity at an episomal reporter gene; this inhibitory activity is abolished by a core domain point mutation. Our results suggest a novel mechanism by which p53 can regulate gene transcription, and a new biological function for its core domain that is susceptible to inactivation by oncogenic point mutations.</description><subject>Amino acids</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>Deactivation</subject><subject>Dehydrogenases</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA binding</subject><subject>DNA-directed RNA polymerase</subject><subject>Ectopic expression</subject><subject>Elongation</subject><subject>Gene expression</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genotoxicity</subject><subject>Health sciences</subject><subject>Inactivation</subject><subject>Lethality</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>p53 Protein</subject><subject>Peptides</subject><subject>Phosphorylation</subject><subject>Point Mutation</subject><subject>Protein Binding</subject><subject>Reporter gene</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Tumor proteins</subject><subject>Tumor suppressor genes</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDguLDjLk1TV-EYfFSWFxZL68hTdKZLG3TTdLR-fZmnO4ylX2QPCSc_M7_XJKTZc8RXCJSoHfXbvS9bJeD680SQowRJw-yU1QSvGAYkodH55PsSQjXEOaEM_Y4O0ksLhlkp5kecgKqPhovVQzgl40bcPVlBQbX7rpkDAZUFYgb78b1BtiEKOcN0K6Ttgey18B2g7Q-gK-u3aODd8qEYLc27kBCtnbrnmaPGtkG82zaz7IfHz98P_-8uLj8VJ2vLhaKlSgusE6FkZwrCTFBRVOUOa4LlNKmNZcN1sYYXkpuWMOYLHSJmlxTrWtaN4gXJTnLXh50h9YFMTUoCEQg4yXKC5KI6kBoJ6_F4G0n_U44acVfg_NrIX20qjWiqBGhpMgNqjnFNS4bWkJOFeM1o4TipPV-ijbWndHK9NHLdiY6v-ntRqzdVhCUQ0J4EngzCXh3M5oQRWeDMm0re-PGIDgnEHKI9qFe_UPeX9xErWXK3_aNS2HVXlOsaMGSHM5popb3UGlp01mVPlNjk33m8HbmkJhofse1HEMQ1ber_2cvf87Z10fsxsg2boJrx2hdH-YgPYDKuxC8ae56jKDYz8JtN8R-FsQ0C8ntxfH73Dndfn7yB4BYAik</recordid><startdate>20110804</startdate><enddate>20110804</enddate><creator>Kim, Sunyoung</creator><creator>Balakrishnan, Sri Kripa</creator><creator>Gross, David S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110804</creationdate><title>p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo</title><author>Kim, Sunyoung ; Balakrishnan, Sri Kripa ; Gross, David S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-2d137358ca02317f7952b710054b8af2deee89a8e6f66a7d91f5d4ddb4bf18793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>Deactivation</topic><topic>Dehydrogenases</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA binding</topic><topic>DNA-directed RNA polymerase</topic><topic>Ectopic expression</topic><topic>Elongation</topic><topic>Gene expression</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genotoxicity</topic><topic>Health sciences</topic><topic>Inactivation</topic><topic>Lethality</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>p53 Protein</topic><topic>Peptides</topic><topic>Phosphorylation</topic><topic>Point Mutation</topic><topic>Protein Binding</topic><topic>Reporter gene</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Tumor proteins</topic><topic>Tumor suppressor genes</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sunyoung</creatorcontrib><creatorcontrib>Balakrishnan, Sri Kripa</creatorcontrib><creatorcontrib>Gross, David S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sunyoung</au><au>Balakrishnan, Sri Kripa</au><au>Gross, David S</au><au>Ott, Melanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-08-04</date><risdate>2011</risdate><volume>6</volume><issue>8</issue><spage>e22183</spage><epage>e22183</epage><pages>e22183-e22183</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The tumor suppressor p53 principally functions as a gene-specific transcription factor. p53 triggers a variety of anti-proliferative programs by activating or repressing the transcription of effector genes in response to genotoxic stress. To date, much effort has been placed on understanding p53's ability to affect transcription in the context of its DNA-binding activity. How p53 regulates transcriptional output independent of DNA binding is less well understood. Here we provide evidence that human p53 can physically interact with the large subunit of RNA polymerase II (Pol II) both in in vitro interaction assays and in whole cell extracts, and that this interaction is mediated (at least in part) through p53's core DNA-binding domain and the Ser5-phosphorylated CTD of Pol II. Ectopic expression of p53, combined with mutations in transcription elongation factors or exposure to drugs that inhibit Pol II elongation, elicit sickness or lethality in yeast cells. These phenotypes are suppressed by oncogenic point mutations within p53's core domain. The growth phenotypes raise the possibility that p53 impairs Pol II elongation. Consistent with this, a p53-dependent increase in Pol II density is seen at constitutively expressed genes without a concomitant increase in transcript accumulation. Additionally, p53-expressing yeast strains exhibit reduced transcriptional processivity at an episomal reporter gene; this inhibitory activity is abolished by a core domain point mutation. Our results suggest a novel mechanism by which p53 can regulate gene transcription, and a new biological function for its core domain that is susceptible to inactivation by oncogenic point mutations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829606</pmid><doi>10.1371/journal.pone.0022183</doi><tpages>e22183</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-08, Vol.6 (8), p.e22183-e22183
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1306891573
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Binding
Binding sites
Biochemistry
Biology
Biosynthesis
Cell cycle
Deactivation
Dehydrogenases
Deoxyribonucleic acid
DNA
DNA binding
DNA-directed RNA polymerase
Ectopic expression
Elongation
Gene expression
Gene mutation
Genes
Genetic aspects
Genomes
Genotoxicity
Health sciences
Inactivation
Lethality
Molecular biology
Mutation
p53 Protein
Peptides
Phosphorylation
Point Mutation
Protein Binding
Reporter gene
Ribonucleic acid
RNA
RNA polymerase
RNA polymerase II
RNA Polymerase II - chemistry
RNA Polymerase II - metabolism
Saccharomyces cerevisiae - genetics
Transcription (Genetics)
Transcription factors
Tumor proteins
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Yeast
title p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p53%20Interacts%20with%20RNA%20polymerase%20II%20through%20its%20core%20domain%20and%20impairs%20Pol%20II%20processivity%20in%20vivo&rft.jtitle=PloS%20one&rft.au=Kim,%20Sunyoung&rft.date=2011-08-04&rft.volume=6&rft.issue=8&rft.spage=e22183&rft.epage=e22183&rft.pages=e22183-e22183&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022183&rft_dat=%3Cgale_plos_%3EA476883254%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306891573&rft_id=info:pmid/21829606&rft_galeid=A476883254&rft_doaj_id=oai_doaj_org_article_7b134375e1b842b29f49084c68b64342&rfr_iscdi=true