Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome

Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-07, Vol.6 (7), p.e22548-e22548
Hauptverfasser: Schneider, Tobias D, Arteaga-Salas, Jose M, Mentele, Edith, David, Robert, Nicetto, Dario, Imhof, Axel, Rupp, Ralph A W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e22548
container_issue 7
container_start_page e22548
container_title PloS one
container_volume 6
creator Schneider, Tobias D
Arteaga-Salas, Jose M
Mentele, Edith
David, Robert
Nicetto, Dario
Imhof, Axel
Rupp, Ralph A W
description Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.
doi_str_mv 10.1371/journal.pone.0022548
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306361204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476884048</galeid><doaj_id>oai_doaj_org_article_0451cf1920a24b0693466c3569dd104f</doaj_id><sourcerecordid>A476884048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-886719c99cba26c151550c13b8c322fe432927437d68ad01929e653f07e7ff293</originalsourceid><addsrcrecordid>eNqNk11r1TAYx4s43Jx-A9GCoOziHPPWNLkRxvDlwGDgVLwLafq0J4e2qUk73Lc33enGqexCcpG33_N_kuclSV5htMY0xx92bvSdbta962CNECEZE0-SEywpWXGC6NOD9XHyPIQdQhkVnD9LjgkWmGUCnyT2etA1rEIPxlbWpFsbhiiYtq6c9nqwrkt77yrbQEg93IBu0rpxRZwGr7tgJyKktkuHLaS_oHP9GFJoC3_ruigIva3jYQsvkqNKNwFezvNp8uPzp-8XX1eXV182F-eXK8MlHlZC8BxLI6UpNOEGZzjLkMG0EIYSUgGjRJKc0bzkQpcISyKBZ7RCOeRVRSQ9Td7sdfvGBTVHKShMEaccE8QisdkTpdM71Xvban-rnLbq7sD5Wmk_WNOAQizDpopOkCasQFxSxrmhGZdliRGrotbH2dtYtFAa6GJUmoXo8qazW1W7G0Uxi1mYHvN-FvDu9whhUK0NBppGd-DGoITASAiR80i-_Yd8_HMzVev4fttVLro1k6Y6ZzkXgiEmIrV-hIqjhNaaWABTvpcGZwuDyAzwZ6j1GILaXH_7f_bq55J9d8BuY3UN2-Ca8a6qliDbg8a7EDxUDzHGSE0NcR8NNTWEmhsimr0-zM-D0X0H0L_QJwVt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306361204</pqid></control><display><type>article</type><title>Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Schneider, Tobias D ; Arteaga-Salas, Jose M ; Mentele, Edith ; David, Robert ; Nicetto, Dario ; Imhof, Axel ; Rupp, Ralph A W</creator><creatorcontrib>Schneider, Tobias D ; Arteaga-Salas, Jose M ; Mentele, Edith ; David, Robert ; Nicetto, Dario ; Imhof, Axel ; Rupp, Ralph A W</creatorcontrib><description>Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022548</identifier><identifier>PMID: 21814581</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Blastula ; Blastula - cytology ; Blastula - metabolism ; Blotting, Western ; Cell Differentiation ; Chromatin ; Chromatography, Liquid ; Cloning ; Deoxyribonucleic acid ; Developmental stages ; Differentiation ; DNA ; DNA binding proteins ; DNA methylation ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - metabolism ; Embryonic development ; Embryonic Stem Cells - metabolism ; Embryos ; Epigenetics ; Epigenomics ; Gene expression ; Gene Expression Profiling ; Genes ; Genomes ; Histone H3 ; Histones ; Histones - chemistry ; Histones - metabolism ; Laboratories ; Lysine - chemistry ; Lysine - genetics ; Mass spectrometry ; Mass spectroscopy ; Methylation ; Mice ; Mice, Inbred ICR ; Molecular biology ; Pluripotency ; Post-translation ; Protein Processing, Post-Translational ; Scientific imaging ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Sperm ; Toads ; Transcription ; Xenopus ; Xenopus laevis ; Xenopus laevis - embryology ; Xenopus laevis - genetics</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22548-e22548</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Schneider et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Schneider et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-886719c99cba26c151550c13b8c322fe432927437d68ad01929e653f07e7ff293</citedby><cites>FETCH-LOGICAL-c691t-886719c99cba26c151550c13b8c322fe432927437d68ad01929e653f07e7ff293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142184/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142184/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21814581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Tobias D</creatorcontrib><creatorcontrib>Arteaga-Salas, Jose M</creatorcontrib><creatorcontrib>Mentele, Edith</creatorcontrib><creatorcontrib>David, Robert</creatorcontrib><creatorcontrib>Nicetto, Dario</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rupp, Ralph A W</creatorcontrib><title>Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.</description><subject>Animals</subject><subject>Biology</subject><subject>Blastula</subject><subject>Blastula - cytology</subject><subject>Blastula - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Differentiation</subject><subject>Chromatin</subject><subject>Chromatography, Liquid</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental stages</subject><subject>Differentiation</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA methylation</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryonic development</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Embryos</subject><subject>Epigenetics</subject><subject>Epigenomics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Genomes</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Laboratories</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methylation</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>Molecular biology</subject><subject>Pluripotency</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Scientific imaging</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Sperm</subject><subject>Toads</subject><subject>Transcription</subject><subject>Xenopus</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - embryology</subject><subject>Xenopus laevis - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r1TAYx4s43Jx-A9GCoOziHPPWNLkRxvDlwGDgVLwLafq0J4e2qUk73Lc33enGqexCcpG33_N_kuclSV5htMY0xx92bvSdbta962CNECEZE0-SEywpWXGC6NOD9XHyPIQdQhkVnD9LjgkWmGUCnyT2etA1rEIPxlbWpFsbhiiYtq6c9nqwrkt77yrbQEg93IBu0rpxRZwGr7tgJyKktkuHLaS_oHP9GFJoC3_ruigIva3jYQsvkqNKNwFezvNp8uPzp-8XX1eXV182F-eXK8MlHlZC8BxLI6UpNOEGZzjLkMG0EIYSUgGjRJKc0bzkQpcISyKBZ7RCOeRVRSQ9Td7sdfvGBTVHKShMEaccE8QisdkTpdM71Xvban-rnLbq7sD5Wmk_WNOAQizDpopOkCasQFxSxrmhGZdliRGrotbH2dtYtFAa6GJUmoXo8qazW1W7G0Uxi1mYHvN-FvDu9whhUK0NBppGd-DGoITASAiR80i-_Yd8_HMzVev4fttVLro1k6Y6ZzkXgiEmIrV-hIqjhNaaWABTvpcGZwuDyAzwZ6j1GILaXH_7f_bq55J9d8BuY3UN2-Ca8a6qliDbg8a7EDxUDzHGSE0NcR8NNTWEmhsimr0-zM-D0X0H0L_QJwVt</recordid><startdate>20110722</startdate><enddate>20110722</enddate><creator>Schneider, Tobias D</creator><creator>Arteaga-Salas, Jose M</creator><creator>Mentele, Edith</creator><creator>David, Robert</creator><creator>Nicetto, Dario</creator><creator>Imhof, Axel</creator><creator>Rupp, Ralph A W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110722</creationdate><title>Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome</title><author>Schneider, Tobias D ; Arteaga-Salas, Jose M ; Mentele, Edith ; David, Robert ; Nicetto, Dario ; Imhof, Axel ; Rupp, Ralph A W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-886719c99cba26c151550c13b8c322fe432927437d68ad01929e653f07e7ff293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Blastula</topic><topic>Blastula - cytology</topic><topic>Blastula - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Differentiation</topic><topic>Chromatin</topic><topic>Chromatography, Liquid</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental stages</topic><topic>Differentiation</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA methylation</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryonic development</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Embryos</topic><topic>Epigenetics</topic><topic>Epigenomics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Genomes</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Laboratories</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methylation</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>Molecular biology</topic><topic>Pluripotency</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Scientific imaging</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Sperm</topic><topic>Toads</topic><topic>Transcription</topic><topic>Xenopus</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - embryology</topic><topic>Xenopus laevis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Tobias D</creatorcontrib><creatorcontrib>Arteaga-Salas, Jose M</creatorcontrib><creatorcontrib>Mentele, Edith</creatorcontrib><creatorcontrib>David, Robert</creatorcontrib><creatorcontrib>Nicetto, Dario</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Rupp, Ralph A W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Tobias D</au><au>Arteaga-Salas, Jose M</au><au>Mentele, Edith</au><au>David, Robert</au><au>Nicetto, Dario</au><au>Imhof, Axel</au><au>Rupp, Ralph A W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-22</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22548</spage><epage>e22548</epage><pages>e22548-e22548</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21814581</pmid><doi>10.1371/journal.pone.0022548</doi><tpages>e22548</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-07, Vol.6 (7), p.e22548-e22548
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1306361204
source PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animals
Biology
Blastula
Blastula - cytology
Blastula - metabolism
Blotting, Western
Cell Differentiation
Chromatin
Chromatography, Liquid
Cloning
Deoxyribonucleic acid
Developmental stages
Differentiation
DNA
DNA binding proteins
DNA methylation
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - metabolism
Embryonic development
Embryonic Stem Cells - metabolism
Embryos
Epigenetics
Epigenomics
Gene expression
Gene Expression Profiling
Genes
Genomes
Histone H3
Histones
Histones - chemistry
Histones - metabolism
Laboratories
Lysine - chemistry
Lysine - genetics
Mass spectrometry
Mass spectroscopy
Methylation
Mice
Mice, Inbred ICR
Molecular biology
Pluripotency
Post-translation
Protein Processing, Post-Translational
Scientific imaging
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Sperm
Toads
Transcription
Xenopus
Xenopus laevis
Xenopus laevis - embryology
Xenopus laevis - genetics
title Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stage-specific%20histone%20modification%20profiles%20reveal%20global%20transitions%20in%20the%20Xenopus%20embryonic%20epigenome&rft.jtitle=PloS%20one&rft.au=Schneider,%20Tobias%20D&rft.date=2011-07-22&rft.volume=6&rft.issue=7&rft.spage=e22548&rft.epage=e22548&rft.pages=e22548-e22548&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022548&rft_dat=%3Cgale_plos_%3EA476884048%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306361204&rft_id=info:pmid/21814581&rft_galeid=A476884048&rft_doaj_id=oai_doaj_org_article_0451cf1920a24b0693466c3569dd104f&rfr_iscdi=true