Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling
Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cell...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-07, Vol.6 (7), p.e23126-e23126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e23126 |
---|---|
container_issue | 7 |
container_start_page | e23126 |
container_title | PloS one |
container_volume | 6 |
creator | Volkmer, Benjamin Heinemann, Matthias |
description | Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development. |
doi_str_mv | 10.1371/journal.pone.0023126 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306226007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476883497</galeid><doaj_id>oai_doaj_org_article_460df4335646472cbb32ff49b72361d5</doaj_id><sourcerecordid>A476883497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-569b99d7bbc12a632b236c5d4a8f4f0fedd6fa49b792ba7dd6317e5d621b22b23</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQLguLDjLk1bV-EZVh1YGHB22tIc-lkSJPZJh2cNz-6qdNdprIP0oc0J7_zPyfn5GTZSwiWEJfww9YPveN2ufNOLQFAGCL6KDuHNUYLigB-fPJ_lj0LYQtAgStKn2ZnCFaoLmpwnv1eeSdNNN4tpNopJ5WLuVDW5ntvh07l3MlceCeSvecjl3udXwWxUb0RG8PToTV59LnmwlgTeVS55HG0u73qw-ihfZ-HQ4iqC3ljvPXtIe-8VNa49nn2RHMb1Itpvch-fLr6vvqyuL75vF5dXi8ErWFcFLRu6lqWTSMg4hSjBmEqCkl4pYkGWklJNSd1U9ao4WXaYViqQlIEGzTCF9nro-7O-sCm4gUGMaAIUQDKRKyPhPR8y3a96Xh_YJ4b9tfg-5bxPhphFSMUSE0wLiihpESiaTDSeoyesoKySFofp2hD0yl5rJ6dic5PnNmw1u8ZhoQWBCSBd5NA728HFSLrTBj7wp3yQ2BVhVPOFSKJfPMP-fDlJqrlKX_jtE9hxajJLklJkxypR2r5AJU-qTqTGqq0SfaZw_uZQ2Ki-hVbPoTA1t--_j9783POvj1hN4rbuAnpQY4PMMxBcgRF70Polb6vMQRsnJO7arBxTtg0J8nt1Wl_7p3uBgP_ARZAD7Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306226007</pqid></control><display><type>article</type><title>Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Volkmer, Benjamin ; Heinemann, Matthias</creator><contributor>Langowski, Jörg</contributor><creatorcontrib>Volkmer, Benjamin ; Heinemann, Matthias ; Langowski, Jörg</creatorcontrib><description>Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0023126</identifier><identifier>PMID: 21829590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biology ; Cell number ; Cell Size ; Data conversion ; Density ; E coli ; Escherichia coli ; Escherichia coli - growth & development ; Flow Cytometry ; Genomes ; Growth rate ; Intracellular ; Kinetics ; Measurement techniques ; Metabolism ; Metabolites ; Microscopy ; Modelling ; Models, Biological ; Optical density ; Saccharomyces cerevisiae ; Systems Biology ; Yeast</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e23126-e23126</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Volkmer, Heinemann. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Volkmer, Heinemann. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-569b99d7bbc12a632b236c5d4a8f4f0fedd6fa49b792ba7dd6317e5d621b22b23</citedby><cites>FETCH-LOGICAL-c691t-569b99d7bbc12a632b236c5d4a8f4f0fedd6fa49b792ba7dd6317e5d621b22b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146540/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146540/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21829590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Langowski, Jörg</contributor><creatorcontrib>Volkmer, Benjamin</creatorcontrib><creatorcontrib>Heinemann, Matthias</creatorcontrib><title>Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development.</description><subject>Analysis</subject><subject>Biology</subject><subject>Cell number</subject><subject>Cell Size</subject><subject>Data conversion</subject><subject>Density</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth & development</subject><subject>Flow Cytometry</subject><subject>Genomes</subject><subject>Growth rate</subject><subject>Intracellular</subject><subject>Kinetics</subject><subject>Measurement techniques</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microscopy</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>Optical density</subject><subject>Saccharomyces cerevisiae</subject><subject>Systems Biology</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQLguLDjLk1bV-EZVh1YGHB22tIc-lkSJPZJh2cNz-6qdNdprIP0oc0J7_zPyfn5GTZSwiWEJfww9YPveN2ufNOLQFAGCL6KDuHNUYLigB-fPJ_lj0LYQtAgStKn2ZnCFaoLmpwnv1eeSdNNN4tpNopJ5WLuVDW5ntvh07l3MlceCeSvecjl3udXwWxUb0RG8PToTV59LnmwlgTeVS55HG0u73qw-ihfZ-HQ4iqC3ljvPXtIe-8VNa49nn2RHMb1Itpvch-fLr6vvqyuL75vF5dXi8ErWFcFLRu6lqWTSMg4hSjBmEqCkl4pYkGWklJNSd1U9ao4WXaYViqQlIEGzTCF9nro-7O-sCm4gUGMaAIUQDKRKyPhPR8y3a96Xh_YJ4b9tfg-5bxPhphFSMUSE0wLiihpESiaTDSeoyesoKySFofp2hD0yl5rJ6dic5PnNmw1u8ZhoQWBCSBd5NA728HFSLrTBj7wp3yQ2BVhVPOFSKJfPMP-fDlJqrlKX_jtE9hxajJLklJkxypR2r5AJU-qTqTGqq0SfaZw_uZQ2Ki-hVbPoTA1t--_j9783POvj1hN4rbuAnpQY4PMMxBcgRF70Polb6vMQRsnJO7arBxTtg0J8nt1Wl_7p3uBgP_ARZAD7Y</recordid><startdate>20110729</startdate><enddate>20110729</enddate><creator>Volkmer, Benjamin</creator><creator>Heinemann, Matthias</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110729</creationdate><title>Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling</title><author>Volkmer, Benjamin ; Heinemann, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-569b99d7bbc12a632b236c5d4a8f4f0fedd6fa49b792ba7dd6317e5d621b22b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Biology</topic><topic>Cell number</topic><topic>Cell Size</topic><topic>Data conversion</topic><topic>Density</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth & development</topic><topic>Flow Cytometry</topic><topic>Genomes</topic><topic>Growth rate</topic><topic>Intracellular</topic><topic>Kinetics</topic><topic>Measurement techniques</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microscopy</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>Optical density</topic><topic>Saccharomyces cerevisiae</topic><topic>Systems Biology</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkmer, Benjamin</creatorcontrib><creatorcontrib>Heinemann, Matthias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkmer, Benjamin</au><au>Heinemann, Matthias</au><au>Langowski, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-29</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e23126</spage><epage>e23126</epage><pages>e23126-e23126</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell--two important parameters for systems biology model development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21829590</pmid><doi>10.1371/journal.pone.0023126</doi><tpages>e23126</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-07, Vol.6 (7), p.e23126-e23126 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1306226007 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Biology Cell number Cell Size Data conversion Density E coli Escherichia coli Escherichia coli - growth & development Flow Cytometry Genomes Growth rate Intracellular Kinetics Measurement techniques Metabolism Metabolites Microscopy Modelling Models, Biological Optical density Saccharomyces cerevisiae Systems Biology Yeast |
title | Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condition-dependent%20cell%20volume%20and%20concentration%20of%20Escherichia%20coli%20to%20facilitate%20data%20conversion%20for%20systems%20biology%20modeling&rft.jtitle=PloS%20one&rft.au=Volkmer,%20Benjamin&rft.date=2011-07-29&rft.volume=6&rft.issue=7&rft.spage=e23126&rft.epage=e23126&rft.pages=e23126-e23126&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0023126&rft_dat=%3Cgale_plos_%3EA476883497%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306226007&rft_id=info:pmid/21829590&rft_galeid=A476883497&rft_doaj_id=oai_doaj_org_article_460df4335646472cbb32ff49b72361d5&rfr_iscdi=true |