Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-07, Vol.6 (7), p.e22300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e22300 |
container_title | PloS one |
container_volume | 6 |
creator | Hwang, Sunyoung Kim, Minkyeong Ryu, Sangryeol Jeon, Byeonghwa |
description | CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni. |
doi_str_mv | 10.1371/journal.pone.0022300 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306135052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476884482</galeid><doaj_id>oai_doaj_org_article_27cfd9c8704b4ce6ae37747ac69e4417</doaj_id><sourcerecordid>A476884482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-3b2e99af831bcc5d619e78ddf140b9de8c192c7772dafe19ac3e323aca17b0a23</originalsourceid><addsrcrecordid>eNqNkm1r2zAUhc3YWLts_2BsgsFgsGR6i2V_GZTQbYFCIXv5Kq7l60TBsVLJLs2_r7y4XQwbDIFk6z736HI4SfKa0RkTin3aus43UM_2rsEZpZwLSp8k5ywXfJpyKp6efJ8lL0LYUjoXWZo-T844yxibZ_I82axw3dXQWtcQVxF3Z8v4c4sktB5DIHGLDwQkxYEsXFh9JNCQWMCmtVD_KfujjPPENmQBu_2hdgWYFj3Z4rZr7MvkWQV1wFfDOUl-frn8sfg2vbr-ulxcXE1NmrN2KgqOeQ5VJlhhzLxMWY4qK8uKSVrkJWaG5dwopXgJFbIcjEDBBRhgqqDAxSR5e9Td1y7owaSgmaApE3M674nlkSgdbPXe2x34g3Zg9e8L59cafGtNjZorU5W5yRSVhTSYAgqlpII4K0rJVNT6PLzWFTssTbTFQz0SHVcau9Frd6sFE3kat0nybhDw7qbD0P5j5IFaQ5zKNpWLYmZng9EXUqVZJmXWU7O_UHGVuLMmxqSy8X7U8GHUEJkW79o1dCHo5ffV_7PXv8bs-xN2g1C3m-Dqrk9ZGIPyCBrvQvBYPTrHqO5T_uCG7lOuh5THtjenrj82PcRa3ANlNfmb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306135052</pqid></control><display><type>article</type><title>Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Hwang, Sunyoung ; Kim, Minkyeong ; Ryu, Sangryeol ; Jeon, Byeonghwa</creator><creatorcontrib>Hwang, Sunyoung ; Kim, Minkyeong ; Ryu, Sangryeol ; Jeon, Byeonghwa</creatorcontrib><description>CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022300</identifier><identifier>PMID: 21811584</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural biotechnology ; Amino Acid Sequence ; Amino acids ; Antisense DNA ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biology ; Biomedical materials ; Campylobacter ; Campylobacter jejuni ; Campylobacter jejuni - drug effects ; Campylobacter jejuni - metabolism ; Cell death ; Deoxyribonuclease ; Deoxyribonuclease I - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Fingerprinting ; E coli ; Electrophoresis ; Electrophoresis, Gel, Two-Dimensional ; Electrophoretic mobility ; Escherichia coli ; Foodborne pathogens ; Footprinting ; Gastroenteritis ; Gel electrophoresis ; Gene expression ; Gene sequencing ; Genes ; Genome, Bacterial - genetics ; Helicobacter pylori ; Humans ; Hydrogen ; Hydrogen peroxide ; Kinases ; LuxS protein ; Metabolism ; Molecular Sequence Data ; Mutagenesis ; Mutation ; Nucleases ; Nucleic acids ; Oxidation resistance ; Oxidative stress ; Oxidative Stress - drug effects ; Paraquat ; Pathogenesis ; Pathogens ; Peptide nucleic acids ; Peptide Nucleic Acids - pharmacology ; Peptides ; Prokaryotes ; Promoter Regions, Genetic - genetics ; Protein Binding - drug effects ; Protein expression ; Proteins ; Regulon - genetics ; Salmonella ; Salmonella Enteritidis ; Sensors ; Sequence Analysis, Protein ; Signal transduction ; Stress response ; Superoxide ; Superoxide Dismutase - metabolism ; Superoxides - metabolism ; Toxicology ; Viability</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22300</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Hwang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Hwang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-3b2e99af831bcc5d619e78ddf140b9de8c192c7772dafe19ac3e323aca17b0a23</citedby><cites>FETCH-LOGICAL-c691t-3b2e99af831bcc5d619e78ddf140b9de8c192c7772dafe19ac3e323aca17b0a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139631/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139631/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21811584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Sunyoung</creatorcontrib><creatorcontrib>Kim, Minkyeong</creatorcontrib><creatorcontrib>Ryu, Sangryeol</creatorcontrib><creatorcontrib>Jeon, Byeonghwa</creatorcontrib><title>Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.</description><subject>Agricultural biotechnology</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Antisense DNA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Campylobacter</subject><subject>Campylobacter jejuni</subject><subject>Campylobacter jejuni - drug effects</subject><subject>Campylobacter jejuni - metabolism</subject><subject>Cell death</subject><subject>Deoxyribonuclease</subject><subject>Deoxyribonuclease I - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Fingerprinting</subject><subject>E coli</subject><subject>Electrophoresis</subject><subject>Electrophoresis, Gel, Two-Dimensional</subject><subject>Electrophoretic mobility</subject><subject>Escherichia coli</subject><subject>Foodborne pathogens</subject><subject>Footprinting</subject><subject>Gastroenteritis</subject><subject>Gel electrophoresis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genome, Bacterial - genetics</subject><subject>Helicobacter pylori</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Hydrogen peroxide</subject><subject>Kinases</subject><subject>LuxS protein</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nucleases</subject><subject>Nucleic acids</subject><subject>Oxidation resistance</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Paraquat</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Peptide nucleic acids</subject><subject>Peptide Nucleic Acids - pharmacology</subject><subject>Peptides</subject><subject>Prokaryotes</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding - drug effects</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Regulon - genetics</subject><subject>Salmonella</subject><subject>Salmonella Enteritidis</subject><subject>Sensors</subject><subject>Sequence Analysis, Protein</subject><subject>Signal transduction</subject><subject>Stress response</subject><subject>Superoxide</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides - metabolism</subject><subject>Toxicology</subject><subject>Viability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm1r2zAUhc3YWLts_2BsgsFgsGR6i2V_GZTQbYFCIXv5Kq7l60TBsVLJLs2_r7y4XQwbDIFk6z736HI4SfKa0RkTin3aus43UM_2rsEZpZwLSp8k5ywXfJpyKp6efJ8lL0LYUjoXWZo-T844yxibZ_I82axw3dXQWtcQVxF3Z8v4c4sktB5DIHGLDwQkxYEsXFh9JNCQWMCmtVD_KfujjPPENmQBu_2hdgWYFj3Z4rZr7MvkWQV1wFfDOUl-frn8sfg2vbr-ulxcXE1NmrN2KgqOeQ5VJlhhzLxMWY4qK8uKSVrkJWaG5dwopXgJFbIcjEDBBRhgqqDAxSR5e9Td1y7owaSgmaApE3M674nlkSgdbPXe2x34g3Zg9e8L59cafGtNjZorU5W5yRSVhTSYAgqlpII4K0rJVNT6PLzWFTssTbTFQz0SHVcau9Frd6sFE3kat0nybhDw7qbD0P5j5IFaQ5zKNpWLYmZng9EXUqVZJmXWU7O_UHGVuLMmxqSy8X7U8GHUEJkW79o1dCHo5ffV_7PXv8bs-xN2g1C3m-Dqrk9ZGIPyCBrvQvBYPTrHqO5T_uCG7lOuh5THtjenrj82PcRa3ANlNfmb</recordid><startdate>20110719</startdate><enddate>20110719</enddate><creator>Hwang, Sunyoung</creator><creator>Kim, Minkyeong</creator><creator>Ryu, Sangryeol</creator><creator>Jeon, Byeonghwa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110719</creationdate><title>Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni</title><author>Hwang, Sunyoung ; Kim, Minkyeong ; Ryu, Sangryeol ; Jeon, Byeonghwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-3b2e99af831bcc5d619e78ddf140b9de8c192c7772dafe19ac3e323aca17b0a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agricultural biotechnology</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Antisense DNA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Campylobacter</topic><topic>Campylobacter jejuni</topic><topic>Campylobacter jejuni - drug effects</topic><topic>Campylobacter jejuni - metabolism</topic><topic>Cell death</topic><topic>Deoxyribonuclease</topic><topic>Deoxyribonuclease I - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Fingerprinting</topic><topic>E coli</topic><topic>Electrophoresis</topic><topic>Electrophoresis, Gel, Two-Dimensional</topic><topic>Electrophoretic mobility</topic><topic>Escherichia coli</topic><topic>Foodborne pathogens</topic><topic>Footprinting</topic><topic>Gastroenteritis</topic><topic>Gel electrophoresis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genome, Bacterial - genetics</topic><topic>Helicobacter pylori</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Hydrogen peroxide</topic><topic>Kinases</topic><topic>LuxS protein</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nucleases</topic><topic>Nucleic acids</topic><topic>Oxidation resistance</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Paraquat</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Peptide nucleic acids</topic><topic>Peptide Nucleic Acids - pharmacology</topic><topic>Peptides</topic><topic>Prokaryotes</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding - drug effects</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Regulon - genetics</topic><topic>Salmonella</topic><topic>Salmonella Enteritidis</topic><topic>Sensors</topic><topic>Sequence Analysis, Protein</topic><topic>Signal transduction</topic><topic>Stress response</topic><topic>Superoxide</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides - metabolism</topic><topic>Toxicology</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Sunyoung</creatorcontrib><creatorcontrib>Kim, Minkyeong</creatorcontrib><creatorcontrib>Ryu, Sangryeol</creatorcontrib><creatorcontrib>Jeon, Byeonghwa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Sunyoung</au><au>Kim, Minkyeong</au><au>Ryu, Sangryeol</au><au>Jeon, Byeonghwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-19</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22300</spage><pages>e22300-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21811584</pmid><doi>10.1371/journal.pone.0022300</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-07, Vol.6 (7), p.e22300 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1306135052 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Agricultural biotechnology Amino Acid Sequence Amino acids Antisense DNA Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Biology Biomedical materials Campylobacter Campylobacter jejuni Campylobacter jejuni - drug effects Campylobacter jejuni - metabolism Cell death Deoxyribonuclease Deoxyribonuclease I - metabolism Deoxyribonucleic acid DNA DNA Fingerprinting E coli Electrophoresis Electrophoresis, Gel, Two-Dimensional Electrophoretic mobility Escherichia coli Foodborne pathogens Footprinting Gastroenteritis Gel electrophoresis Gene expression Gene sequencing Genes Genome, Bacterial - genetics Helicobacter pylori Humans Hydrogen Hydrogen peroxide Kinases LuxS protein Metabolism Molecular Sequence Data Mutagenesis Mutation Nucleases Nucleic acids Oxidation resistance Oxidative stress Oxidative Stress - drug effects Paraquat Pathogenesis Pathogens Peptide nucleic acids Peptide Nucleic Acids - pharmacology Peptides Prokaryotes Promoter Regions, Genetic - genetics Protein Binding - drug effects Protein expression Proteins Regulon - genetics Salmonella Salmonella Enteritidis Sensors Sequence Analysis, Protein Signal transduction Stress response Superoxide Superoxide Dismutase - metabolism Superoxides - metabolism Toxicology Viability |
title | Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20oxidative%20stress%20response%20by%20CosR,%20an%20essential%20response%20regulator%20in%20Campylobacter%20jejuni&rft.jtitle=PloS%20one&rft.au=Hwang,%20Sunyoung&rft.date=2011-07-19&rft.volume=6&rft.issue=7&rft.spage=e22300&rft.pages=e22300-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022300&rft_dat=%3Cgale_plos_%3EA476884482%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306135052&rft_id=info:pmid/21811584&rft_galeid=A476884482&rft_doaj_id=oai_doaj_org_article_27cfd9c8704b4ce6ae37747ac69e4417&rfr_iscdi=true |