Information dynamics in living systems: prokaryotes, eukaryotes, and cancer

Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-07, Vol.6 (7), p.e22085
Hauptverfasser: Frieden, B Roy, Gatenby, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e22085
container_title PloS one
container_volume 6
creator Frieden, B Roy
Gatenby, Robert A
description Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.
doi_str_mv 10.1371/journal.pone.0022085
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1306134391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476884461</galeid><doaj_id>oai_doaj_org_article_d15eb459044a4deca813b1f8965437fd</doaj_id><sourcerecordid>A476884461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-703b0f97ce16537a09813779d27bb782f2c1c392261fc6f91b7d239c7cac57463</originalsourceid><addsrcrecordid>eNqNkmuL1DAUhoso7rr6D0QLgiA4Y25NGj8Iy-JlcGHB29eQpkknY5uMSbo4_96M012noCD5kHDynDcn57xF8RiCJcQMvtr4MTjZL7fe6SUACIG6ulOcQo7RgiKA7x6dT4oHMW4AqHBN6f3iBMEa1ohXp8XHlTM-DDJZ78p25-RgVSytK3t7bV1Xxl1Meoivy23w32XY-aTjy1KPf87StaWSTunwsLhnZB_1o2k_K76-e_vl4sPi8ur96uL8cqEoh2nBAG6A4UxpSCvMJOB1_hDjLWJNw2pkkIIKc4QoNIoaDhvWIswVU1JVjFB8Vjw96G57H8XUhyggBhRigjnMxOpAtF5uxDbYIZcrvLTid8CHTsiQrOq1aGGlG1JxQIgkrVYyF9NAU3NaEcxMm7XeTK-NzaBbpV0Ksp-Jzm-cXYvOXwsMMacAZ4Fnk0DwP0Yd0z9KnqhO5qpsnkoWU4ONSpwTRuuaELqnln-h8mp1Hlx2grE5Pkt4MUvITNI_UyfHGMXq86f_Z6--zdnnR-xayz6to-_HvY_iHCQHUAUfY9DmtnMQiL2Rb7oh9kYWk5Fz2pPjrt8m3TgX_wLJ6u0f</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306134391</pqid></control><display><type>article</type><title>Information dynamics in living systems: prokaryotes, eukaryotes, and cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Frieden, B Roy ; Gatenby, Robert A</creator><contributor>Oresic, Matej</contributor><creatorcontrib>Frieden, B Roy ; Gatenby, Robert A ; Oresic, Matej</creatorcontrib><description>Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022085</identifier><identifier>PMID: 21818295</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Biological evolution ; Biology ; Breast cancer ; Cancer ; Cancer research ; Carcinogenesis ; Carcinogens ; Cell Proliferation ; Dehydrogenases ; Disease prevention ; Divergence ; Energy balance ; Energy consumption ; Entropy ; Equilibrium ; Eukaryotes ; Eukaryotic Cells - metabolism ; Evolution ; Evolution (Biology) ; Glycolysis ; Humans ; Hypotheses ; Information systems ; Information Theory ; Mammography ; Medical prognosis ; Medical screening ; Metabolism ; Minima ; Mitochondria ; Mutation ; Neoplasms - metabolism ; Neoplasms - pathology ; Organelles ; Phase transitions ; Physical characteristics ; Population ; Prokaryotes ; Prokaryotic Cells - metabolism ; Proteins ; Statistical mechanics ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22085</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Frieden and Gatenby. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Frieden and Gatenby. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-703b0f97ce16537a09813779d27bb782f2c1c392261fc6f91b7d239c7cac57463</citedby><cites>FETCH-LOGICAL-c691t-703b0f97ce16537a09813779d27bb782f2c1c392261fc6f91b7d239c7cac57463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139603/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139603/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21818295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Oresic, Matej</contributor><creatorcontrib>Frieden, B Roy</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><title>Information dynamics in living systems: prokaryotes, eukaryotes, and cancer</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.</description><subject>Analysis</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer research</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Cell Proliferation</subject><subject>Dehydrogenases</subject><subject>Disease prevention</subject><subject>Divergence</subject><subject>Energy balance</subject><subject>Energy consumption</subject><subject>Entropy</subject><subject>Equilibrium</subject><subject>Eukaryotes</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Evolution</subject><subject>Evolution (Biology)</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Information systems</subject><subject>Information Theory</subject><subject>Mammography</subject><subject>Medical prognosis</subject><subject>Medical screening</subject><subject>Metabolism</subject><subject>Minima</subject><subject>Mitochondria</subject><subject>Mutation</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organelles</subject><subject>Phase transitions</subject><subject>Physical characteristics</subject><subject>Population</subject><subject>Prokaryotes</subject><subject>Prokaryotic Cells - metabolism</subject><subject>Proteins</subject><subject>Statistical mechanics</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkmuL1DAUhoso7rr6D0QLgiA4Y25NGj8Iy-JlcGHB29eQpkknY5uMSbo4_96M012noCD5kHDynDcn57xF8RiCJcQMvtr4MTjZL7fe6SUACIG6ulOcQo7RgiKA7x6dT4oHMW4AqHBN6f3iBMEa1ohXp8XHlTM-DDJZ78p25-RgVSytK3t7bV1Xxl1Meoivy23w32XY-aTjy1KPf87StaWSTunwsLhnZB_1o2k_K76-e_vl4sPi8ur96uL8cqEoh2nBAG6A4UxpSCvMJOB1_hDjLWJNw2pkkIIKc4QoNIoaDhvWIswVU1JVjFB8Vjw96G57H8XUhyggBhRigjnMxOpAtF5uxDbYIZcrvLTid8CHTsiQrOq1aGGlG1JxQIgkrVYyF9NAU3NaEcxMm7XeTK-NzaBbpV0Ksp-Jzm-cXYvOXwsMMacAZ4Fnk0DwP0Yd0z9KnqhO5qpsnkoWU4ONSpwTRuuaELqnln-h8mp1Hlx2grE5Pkt4MUvITNI_UyfHGMXq86f_Z6--zdnnR-xayz6to-_HvY_iHCQHUAUfY9DmtnMQiL2Rb7oh9kYWk5Fz2pPjrt8m3TgX_wLJ6u0f</recordid><startdate>20110719</startdate><enddate>20110719</enddate><creator>Frieden, B Roy</creator><creator>Gatenby, Robert A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110719</creationdate><title>Information dynamics in living systems: prokaryotes, eukaryotes, and cancer</title><author>Frieden, B Roy ; Gatenby, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-703b0f97ce16537a09813779d27bb782f2c1c392261fc6f91b7d239c7cac57463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer research</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Cell Proliferation</topic><topic>Dehydrogenases</topic><topic>Disease prevention</topic><topic>Divergence</topic><topic>Energy balance</topic><topic>Energy consumption</topic><topic>Entropy</topic><topic>Equilibrium</topic><topic>Eukaryotes</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Evolution</topic><topic>Evolution (Biology)</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Information systems</topic><topic>Information Theory</topic><topic>Mammography</topic><topic>Medical prognosis</topic><topic>Medical screening</topic><topic>Metabolism</topic><topic>Minima</topic><topic>Mitochondria</topic><topic>Mutation</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organelles</topic><topic>Phase transitions</topic><topic>Physical characteristics</topic><topic>Population</topic><topic>Prokaryotes</topic><topic>Prokaryotic Cells - metabolism</topic><topic>Proteins</topic><topic>Statistical mechanics</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frieden, B Roy</creatorcontrib><creatorcontrib>Gatenby, Robert A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frieden, B Roy</au><au>Gatenby, Robert A</au><au>Oresic, Matej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information dynamics in living systems: prokaryotes, eukaryotes, and cancer</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-19</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22085</spage><pages>e22085-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Living systems use information and energy to maintain stable entropy while far from thermodynamic equilibrium. The underlying first principles have not been established. We propose that stable entropy in living systems, in the absence of thermodynamic equilibrium, requires an information extremum (maximum or minimum), which is invariant to first order perturbations. Proliferation and death represent key feedback mechanisms that promote stability even in a non-equilibrium state. A system moves to low or high information depending on its energy status, as the benefit of information in maintaining and increasing order is balanced against its energy cost. Prokaryotes, which lack specialized energy-producing organelles (mitochondria), are energy-limited and constrained to an information minimum. Acquisition of mitochondria is viewed as a critical evolutionary step that, by allowing eukaryotes to achieve a sufficiently high energy state, permitted a phase transition to an information maximum. This state, in contrast to the prokaryote minima, allowed evolution of complex, multicellular organisms. A special case is a malignant cell, which is modeled as a phase transition from a maximum to minimum information state. The minimum leads to a predicted power-law governing the in situ growth that is confirmed by studies measuring growth of small breast cancers. We find living systems achieve a stable entropic state by maintaining an extreme level of information. The evolutionary divergence of prokaryotes and eukaryotes resulted from acquisition of specialized energy organelles that allowed transition from information minima to maxima, respectively. Carcinogenesis represents a reverse transition: of an information maximum to minimum. The progressive information loss is evident in accumulating mutations, disordered morphology, and functional decline characteristics of human cancers. The findings suggest energy restriction is a critical first step that triggers the genetic mutations that drive somatic evolution of the malignant phenotype.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21818295</pmid><doi>10.1371/journal.pone.0022085</doi><tpages>e22085</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-07, Vol.6 (7), p.e22085
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1306134391
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Biological evolution
Biology
Breast cancer
Cancer
Cancer research
Carcinogenesis
Carcinogens
Cell Proliferation
Dehydrogenases
Disease prevention
Divergence
Energy balance
Energy consumption
Entropy
Equilibrium
Eukaryotes
Eukaryotic Cells - metabolism
Evolution
Evolution (Biology)
Glycolysis
Humans
Hypotheses
Information systems
Information Theory
Mammography
Medical prognosis
Medical screening
Metabolism
Minima
Mitochondria
Mutation
Neoplasms - metabolism
Neoplasms - pathology
Organelles
Phase transitions
Physical characteristics
Population
Prokaryotes
Prokaryotic Cells - metabolism
Proteins
Statistical mechanics
Thermodynamic equilibrium
Thermodynamics
title Information dynamics in living systems: prokaryotes, eukaryotes, and cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20dynamics%20in%20living%20systems:%20prokaryotes,%20eukaryotes,%20and%20cancer&rft.jtitle=PloS%20one&rft.au=Frieden,%20B%20Roy&rft.date=2011-07-19&rft.volume=6&rft.issue=7&rft.spage=e22085&rft.pages=e22085-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022085&rft_dat=%3Cgale_plos_%3EA476884461%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1306134391&rft_id=info:pmid/21818295&rft_galeid=A476884461&rft_doaj_id=oai_doaj_org_article_d15eb459044a4deca813b1f8965437fd&rfr_iscdi=true