Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin
Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-07, Vol.6 (7), p.e22253-e22253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e22253 |
---|---|
container_issue | 7 |
container_start_page | e22253 |
container_title | PloS one |
container_volume | 6 |
creator | Iizuka, Ryo Ueno, Taro Morone, Nobuhiro Funatsu, Takashi |
description | Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion. |
doi_str_mv | 10.1371/journal.pone.0022253 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1305414984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476885842</galeid><doaj_id>oai_doaj_org_article_0398231ea05b4caa806b8c726d38795c</doaj_id><sourcerecordid>A476885842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-bd559e60fd6d02e86cedb7bee0f5064bd79ed2d9da0fa199bfd81bae1f0e08d3</originalsourceid><addsrcrecordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVhy3Ll0AI_VgIBJrQq5ClsVdBlraSXZr--spZJ6xLDkUHidEzr-x3ZrLsNUZrTCv86caPwUm73nkHa4QIISV9kh3jmpIVI4g-PTgfZS9ivEGopJyx59kRwVVVF6g8zrZXxnUWVr23oEYLeWtHHyAqcArynbcymD9yMN7lcRj1be7bXHnX-tDfRaXN1Va6DnLjchnSGVKoC37c5ZvNdLeD4J1xL7NnrbQRXs37SXb95fP1-bfVxeXXzfnZxUqxGg-rRpdlDQy1mmlEgDMFuqkaANSWiBWNrmrQRNdaolbium5azXEjAbcIENf0JHu7l91ZH8XsURSYorLARc2LRGz2hPbyRuyC6WW4FV4acRfwoRMyDEZZEIjWnFAMEpVNoaTkiDVcVYRpyqu6VEnrdH5tbHrQybQhSLsQXd44sxWd_yUopqzEPAl8mAWC_zlCHERvkvfWSgd-jIJXnBNSEJLId_-Qj__cTHUyfb9JdUrPqklTnBUV47zkxaS1foRKS0NvUnWhNSm-SPi4SEjMAL-HTo4xis3V9_9nL38s2fcH7Da1zrCN3o5TZ8UlWOxBFXyMAdoHjzES0zjcuyGmcRDzOKS0N4f1eUi673_6F0MTB8U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305414984</pqid></control><display><type>article</type><title>Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Iizuka, Ryo ; Ueno, Taro ; Morone, Nobuhiro ; Funatsu, Takashi</creator><contributor>Saks, Valdur</contributor><creatorcontrib>Iizuka, Ryo ; Ueno, Taro ; Morone, Nobuhiro ; Funatsu, Takashi ; Saks, Valdur</creatorcontrib><description>Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022253</identifier><identifier>PMID: 21779405</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphate ; Archaea ; Archaeal Proteins - chemistry ; Binding sites ; Biology ; Chaperonins ; Crystal structure ; Cytosol ; Fluorescence ; Fluorescence polarization ; Group II Chaperonins - chemistry ; Microscopy ; Microscopy, Polarization ; Models, Molecular ; Molecular biology ; Nucleotides ; Pharmaceutical sciences ; Polarization ; Polarization modulation ; Protein folding ; Protein Structure, Secondary ; Spectrum analysis ; Thermococcus - metabolism</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22253-e22253</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Iizuka et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Iizuka et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-bd559e60fd6d02e86cedb7bee0f5064bd79ed2d9da0fa199bfd81bae1f0e08d3</citedby><cites>FETCH-LOGICAL-c691t-bd559e60fd6d02e86cedb7bee0f5064bd79ed2d9da0fa199bfd81bae1f0e08d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136518/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136518/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21779405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saks, Valdur</contributor><creatorcontrib>Iizuka, Ryo</creatorcontrib><creatorcontrib>Ueno, Taro</creatorcontrib><creatorcontrib>Morone, Nobuhiro</creatorcontrib><creatorcontrib>Funatsu, Takashi</creatorcontrib><title>Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.</description><subject>Adenosine triphosphate</subject><subject>Archaea</subject><subject>Archaeal Proteins - chemistry</subject><subject>Binding sites</subject><subject>Biology</subject><subject>Chaperonins</subject><subject>Crystal structure</subject><subject>Cytosol</subject><subject>Fluorescence</subject><subject>Fluorescence polarization</subject><subject>Group II Chaperonins - chemistry</subject><subject>Microscopy</subject><subject>Microscopy, Polarization</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Nucleotides</subject><subject>Pharmaceutical sciences</subject><subject>Polarization</subject><subject>Polarization modulation</subject><subject>Protein folding</subject><subject>Protein Structure, Secondary</subject><subject>Spectrum analysis</subject><subject>Thermococcus - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01r3DAQhk1padK0_6C0hkJLD7vVhy3Ll0AI_VgIBJrQq5ClsVdBlraSXZr--spZJ6xLDkUHidEzr-x3ZrLsNUZrTCv86caPwUm73nkHa4QIISV9kh3jmpIVI4g-PTgfZS9ivEGopJyx59kRwVVVF6g8zrZXxnUWVr23oEYLeWtHHyAqcArynbcymD9yMN7lcRj1be7bXHnX-tDfRaXN1Va6DnLjchnSGVKoC37c5ZvNdLeD4J1xL7NnrbQRXs37SXb95fP1-bfVxeXXzfnZxUqxGg-rRpdlDQy1mmlEgDMFuqkaANSWiBWNrmrQRNdaolbium5azXEjAbcIENf0JHu7l91ZH8XsURSYorLARc2LRGz2hPbyRuyC6WW4FV4acRfwoRMyDEZZEIjWnFAMEpVNoaTkiDVcVYRpyqu6VEnrdH5tbHrQybQhSLsQXd44sxWd_yUopqzEPAl8mAWC_zlCHERvkvfWSgd-jIJXnBNSEJLId_-Qj__cTHUyfb9JdUrPqklTnBUV47zkxaS1foRKS0NvUnWhNSm-SPi4SEjMAL-HTo4xis3V9_9nL38s2fcH7Da1zrCN3o5TZ8UlWOxBFXyMAdoHjzES0zjcuyGmcRDzOKS0N4f1eUi673_6F0MTB8U</recordid><startdate>20110714</startdate><enddate>20110714</enddate><creator>Iizuka, Ryo</creator><creator>Ueno, Taro</creator><creator>Morone, Nobuhiro</creator><creator>Funatsu, Takashi</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110714</creationdate><title>Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin</title><author>Iizuka, Ryo ; Ueno, Taro ; Morone, Nobuhiro ; Funatsu, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-bd559e60fd6d02e86cedb7bee0f5064bd79ed2d9da0fa199bfd81bae1f0e08d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine triphosphate</topic><topic>Archaea</topic><topic>Archaeal Proteins - chemistry</topic><topic>Binding sites</topic><topic>Biology</topic><topic>Chaperonins</topic><topic>Crystal structure</topic><topic>Cytosol</topic><topic>Fluorescence</topic><topic>Fluorescence polarization</topic><topic>Group II Chaperonins - chemistry</topic><topic>Microscopy</topic><topic>Microscopy, Polarization</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Nucleotides</topic><topic>Pharmaceutical sciences</topic><topic>Polarization</topic><topic>Polarization modulation</topic><topic>Protein folding</topic><topic>Protein Structure, Secondary</topic><topic>Spectrum analysis</topic><topic>Thermococcus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iizuka, Ryo</creatorcontrib><creatorcontrib>Ueno, Taro</creatorcontrib><creatorcontrib>Morone, Nobuhiro</creatorcontrib><creatorcontrib>Funatsu, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iizuka, Ryo</au><au>Ueno, Taro</au><au>Morone, Nobuhiro</au><au>Funatsu, Takashi</au><au>Saks, Valdur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-14</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22253</spage><epage>e22253</epage><pages>e22253-e22253</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21779405</pmid><doi>10.1371/journal.pone.0022253</doi><tpages>e22253</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-07, Vol.6 (7), p.e22253-e22253 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1305414984 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphate Archaea Archaeal Proteins - chemistry Binding sites Biology Chaperonins Crystal structure Cytosol Fluorescence Fluorescence polarization Group II Chaperonins - chemistry Microscopy Microscopy, Polarization Models, Molecular Molecular biology Nucleotides Pharmaceutical sciences Polarization Polarization modulation Protein folding Protein Structure, Secondary Spectrum analysis Thermococcus - metabolism |
title | Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20fluorescence%20polarization%20study%20of%20conformational%20change%20in%20archaeal%20group%20II%20chaperonin&rft.jtitle=PloS%20one&rft.au=Iizuka,%20Ryo&rft.date=2011-07-14&rft.volume=6&rft.issue=7&rft.spage=e22253&rft.epage=e22253&rft.pages=e22253-e22253&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022253&rft_dat=%3Cgale_plos_%3EA476885842%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1305414984&rft_id=info:pmid/21779405&rft_galeid=A476885842&rft_doaj_id=oai_doaj_org_article_0398231ea05b4caa806b8c726d38795c&rfr_iscdi=true |