A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13
The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and hepari...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-07, Vol.6 (7), p.e22157-e22157 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e22157 |
---|---|
container_issue | 7 |
container_start_page | e22157 |
container_title | PloS one |
container_volume | 6 |
creator | Zhang, Jingyu Ma, Zhenni Dong, Ningzheng Liu, Fang Su, Jian Zhao, Yiming Shen, Fei Wang, Anyou Ruan, Changgeng |
description | The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13. |
doi_str_mv | 10.1371/journal.pone.0022157 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1305410265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476885994</galeid><doaj_id>oai_doaj_org_article_ccf2a366e1574236b249b20eb0541d46</doaj_id><sourcerecordid>A476885994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-19a95e29fa994ca6b13ca37051ef7e321e6caa2a5a3a9767c57081854d943f093</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRrFb_gWhAULzYNR8zmZkbYalfhUrBVr0MZzJndlMyyZpkinvlXzdrt6UrvZBc5Os570ne5BTFM0bnTNTs7YWfggM7X3uHc0o5Z1V9r3jEWsFnklNx_9b4oHgc4wWllWikfFgccFbXrWiaR8XvBdHeDT6MkIx3s4gummQukYzeeW19TkHAJdP5fkNgCcbFRNIKyYKT3o95TvxALr0jP4y12AVwPRlAJx9IwH7SGIlJkayDT-jtJppIug1ZvF98OT9j4knxYAAb8emuPyy-ffxwfvR5dnL66fhocTLTsmVpxlpoK-TtAG1bapAdExpETSuGQ42CM5QagEMFAtpa1rqqacOaquzbUgy0FYfFiyvdtfVR7byLiglalYxyWWXi-IroPVyodTAjhI3yYNTfBR-WCkIy2qLSeuAgpMRsecmF7HjZdpxitxXrS5m13u2yTd2IvUaXAtg90f0dZ1Zq6S-VYEJIzrLA651A8D8njEmNJmq0Fhz6KaqmbhrOKKWZfPkPeffldtQS8vlNfvCcVm811aKsZdNU2ddMze-gcutxNPmb4GDy-l7Am72AzCT8lZYwxaiOz77-P3v6fZ99dYtdIdi0it5O2y8a98HyCtTBxxhwuPGYUbUtk2s31LZM1K5Mctjz2-9zE3RdF-IP-QgNFQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1305410265</pqid></control><display><type>article</type><title>A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Jingyu ; Ma, Zhenni ; Dong, Ningzheng ; Liu, Fang ; Su, Jian ; Zhao, Yiming ; Shen, Fei ; Wang, Anyou ; Ruan, Changgeng</creator><contributor>Reitsma, Pieter H.</contributor><creatorcontrib>Zhang, Jingyu ; Ma, Zhenni ; Dong, Ningzheng ; Liu, Fang ; Su, Jian ; Zhao, Yiming ; Shen, Fei ; Wang, Anyou ; Ruan, Changgeng ; Reitsma, Pieter H.</creatorcontrib><description>The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0022157</identifier><identifier>PMID: 21779388</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ADAM Proteins - metabolism ; ADAMTS13 Protein ; Analysis ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - pharmacology ; Anticoagulants ; Antigenic determinants ; Antigens ; Biological activity ; Biology ; Blood platelets ; Cleavage ; Coagulation ; Coagulation factor VIII ; Coagulation factors ; Conformation ; E coli ; Enzyme-linked immunosorbent assay ; Enzymes ; Epitopes ; Factor VIII ; Fluid flow ; Glycoproteins ; Hematology ; Heparin ; Hospitals ; Humans ; Immunoglobulins ; Laboratories ; Mechanical stimuli ; Medicine ; Monoclonal antibodies ; Mutation ; Plasma ; Protein Binding - drug effects ; Protein Conformation ; Proteins ; Proteolysis ; Recombinant proteins ; Recombinant Proteins - genetics ; Recombinant Proteins - immunology ; Recombinant Proteins - metabolism ; Shear stress ; Shear stresses ; Studies ; Sulfate ; Sulfates ; Thrombosis ; Thrombospondin ; Von Willebrand factor ; von Willebrand Factor - genetics ; von Willebrand Factor - immunology ; von Willebrand Factor - metabolism</subject><ispartof>PloS one, 2011-07, Vol.6 (7), p.e22157-e22157</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Zhang et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-19a95e29fa994ca6b13ca37051ef7e321e6caa2a5a3a9767c57081854d943f093</citedby><cites>FETCH-LOGICAL-c691t-19a95e29fa994ca6b13ca37051ef7e321e6caa2a5a3a9767c57081854d943f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133621/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133621/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21779388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Reitsma, Pieter H.</contributor><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Ma, Zhenni</creatorcontrib><creatorcontrib>Dong, Ningzheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Wang, Anyou</creatorcontrib><creatorcontrib>Ruan, Changgeng</creatorcontrib><title>A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.</description><subject>ADAM Proteins - metabolism</subject><subject>ADAMTS13 Protein</subject><subject>Analysis</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Anticoagulants</subject><subject>Antigenic determinants</subject><subject>Antigens</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Blood platelets</subject><subject>Cleavage</subject><subject>Coagulation</subject><subject>Coagulation factor VIII</subject><subject>Coagulation factors</subject><subject>Conformation</subject><subject>E coli</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Epitopes</subject><subject>Factor VIII</subject><subject>Fluid flow</subject><subject>Glycoproteins</subject><subject>Hematology</subject><subject>Heparin</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Laboratories</subject><subject>Mechanical stimuli</subject><subject>Medicine</subject><subject>Monoclonal antibodies</subject><subject>Mutation</subject><subject>Plasma</subject><subject>Protein Binding - drug effects</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Recombinant proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - immunology</subject><subject>Recombinant Proteins - metabolism</subject><subject>Shear stress</subject><subject>Shear stresses</subject><subject>Studies</subject><subject>Sulfate</subject><subject>Sulfates</subject><subject>Thrombosis</subject><subject>Thrombospondin</subject><subject>Von Willebrand factor</subject><subject>von Willebrand Factor - genetics</subject><subject>von Willebrand Factor - immunology</subject><subject>von Willebrand Factor - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRrFb_gWhAULzYNR8zmZkbYalfhUrBVr0MZzJndlMyyZpkinvlXzdrt6UrvZBc5Os570ne5BTFM0bnTNTs7YWfggM7X3uHc0o5Z1V9r3jEWsFnklNx_9b4oHgc4wWllWikfFgccFbXrWiaR8XvBdHeDT6MkIx3s4gummQukYzeeW19TkHAJdP5fkNgCcbFRNIKyYKT3o95TvxALr0jP4y12AVwPRlAJx9IwH7SGIlJkayDT-jtJppIug1ZvF98OT9j4knxYAAb8emuPyy-ffxwfvR5dnL66fhocTLTsmVpxlpoK-TtAG1bapAdExpETSuGQ42CM5QagEMFAtpa1rqqacOaquzbUgy0FYfFiyvdtfVR7byLiglalYxyWWXi-IroPVyodTAjhI3yYNTfBR-WCkIy2qLSeuAgpMRsecmF7HjZdpxitxXrS5m13u2yTd2IvUaXAtg90f0dZ1Zq6S-VYEJIzrLA651A8D8njEmNJmq0Fhz6KaqmbhrOKKWZfPkPeffldtQS8vlNfvCcVm811aKsZdNU2ddMze-gcutxNPmb4GDy-l7Am72AzCT8lZYwxaiOz77-P3v6fZ99dYtdIdi0it5O2y8a98HyCtTBxxhwuPGYUbUtk2s31LZM1K5Mctjz2-9zE3RdF-IP-QgNFQ</recordid><startdate>20110711</startdate><enddate>20110711</enddate><creator>Zhang, Jingyu</creator><creator>Ma, Zhenni</creator><creator>Dong, Ningzheng</creator><creator>Liu, Fang</creator><creator>Su, Jian</creator><creator>Zhao, Yiming</creator><creator>Shen, Fei</creator><creator>Wang, Anyou</creator><creator>Ruan, Changgeng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110711</creationdate><title>A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13</title><author>Zhang, Jingyu ; Ma, Zhenni ; Dong, Ningzheng ; Liu, Fang ; Su, Jian ; Zhao, Yiming ; Shen, Fei ; Wang, Anyou ; Ruan, Changgeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-19a95e29fa994ca6b13ca37051ef7e321e6caa2a5a3a9767c57081854d943f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ADAM Proteins - metabolism</topic><topic>ADAMTS13 Protein</topic><topic>Analysis</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Anticoagulants</topic><topic>Antigenic determinants</topic><topic>Antigens</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Blood platelets</topic><topic>Cleavage</topic><topic>Coagulation</topic><topic>Coagulation factor VIII</topic><topic>Coagulation factors</topic><topic>Conformation</topic><topic>E coli</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Epitopes</topic><topic>Factor VIII</topic><topic>Fluid flow</topic><topic>Glycoproteins</topic><topic>Hematology</topic><topic>Heparin</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Laboratories</topic><topic>Mechanical stimuli</topic><topic>Medicine</topic><topic>Monoclonal antibodies</topic><topic>Mutation</topic><topic>Plasma</topic><topic>Protein Binding - drug effects</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Recombinant proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - immunology</topic><topic>Recombinant Proteins - metabolism</topic><topic>Shear stress</topic><topic>Shear stresses</topic><topic>Studies</topic><topic>Sulfate</topic><topic>Sulfates</topic><topic>Thrombosis</topic><topic>Thrombospondin</topic><topic>Von Willebrand factor</topic><topic>von Willebrand Factor - genetics</topic><topic>von Willebrand Factor - immunology</topic><topic>von Willebrand Factor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingyu</creatorcontrib><creatorcontrib>Ma, Zhenni</creatorcontrib><creatorcontrib>Dong, Ningzheng</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Su, Jian</creatorcontrib><creatorcontrib>Zhao, Yiming</creatorcontrib><creatorcontrib>Shen, Fei</creatorcontrib><creatorcontrib>Wang, Anyou</creatorcontrib><creatorcontrib>Ruan, Changgeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingyu</au><au>Ma, Zhenni</au><au>Dong, Ningzheng</au><au>Liu, Fang</au><au>Su, Jian</au><au>Zhao, Yiming</au><au>Shen, Fei</au><au>Wang, Anyou</au><au>Ruan, Changgeng</au><au>Reitsma, Pieter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-07-11</date><risdate>2011</risdate><volume>6</volume><issue>7</issue><spage>e22157</spage><epage>e22157</epage><pages>e22157-e22157</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The size of von Willebrand factor (VWF), controlled by ADAMTS13-dependent proteolysis, is associated with its hemostatic activity. Many factors regulate ADAMTS13-dependent VWF proteolysis through their interaction with VWF. These include coagulation factor VIII, platelet glycoprotein 1bα, and heparin sulfate, which accelerate the cleavage of VWF. Conversely, thrombospondin-1 decreases the rate of VWF proteolysis by ADAMTS13 by competing with ADAMTS13 for the A3 domain of VWF. To investigate whether murine monoclonal antibodies (mAbs) against human VWF affect the susceptibility of VWF to proteolysis by ADAMTS13 in vitro, eight mAbs to different domains of human VWF were used to evaluate the effects on VWF cleavage by ADAMTS13 under fluid shear stress and static/denaturing conditions. Additionally, the epitope of anti-VWF mAb (SZ34) was mapped using recombinant proteins in combination with enzyme-linked immunosorbent assay and Western blot analysis. The results indicate that mAb SZ34 inhibited proteolytic cleavage of VWF by ADAMTS13 in a concentration-dependent manner under fluid shear stress, but not under static/denaturing conditions. The binding epitope of SZ34 mAb is located between A1555 and G1595 in the central A2 domain of VWF. These data show that an anti-VWF mAb against the VWF-A2 domain (A1555-G1595) reduces the proteolytic cleavage of VWF by ADAMTS13 under shear stress, suggesting the role of this region in interaction with ADAMTS13.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21779388</pmid><doi>10.1371/journal.pone.0022157</doi><tpages>e22157</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-07, Vol.6 (7), p.e22157-e22157 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1305410265 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | ADAM Proteins - metabolism ADAMTS13 Protein Analysis Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - immunology Antibodies, Monoclonal - pharmacology Anticoagulants Antigenic determinants Antigens Biological activity Biology Blood platelets Cleavage Coagulation Coagulation factor VIII Coagulation factors Conformation E coli Enzyme-linked immunosorbent assay Enzymes Epitopes Factor VIII Fluid flow Glycoproteins Hematology Heparin Hospitals Humans Immunoglobulins Laboratories Mechanical stimuli Medicine Monoclonal antibodies Mutation Plasma Protein Binding - drug effects Protein Conformation Proteins Proteolysis Recombinant proteins Recombinant Proteins - genetics Recombinant Proteins - immunology Recombinant Proteins - metabolism Shear stress Shear stresses Studies Sulfate Sulfates Thrombosis Thrombospondin Von Willebrand factor von Willebrand Factor - genetics von Willebrand Factor - immunology von Willebrand Factor - metabolism |
title | A conformation-sensitive monoclonal antibody against the A2 domain of von Willebrand factor reduces its proteolysis by ADAMTS13 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conformation-sensitive%20monoclonal%20antibody%20against%20the%20A2%20domain%20of%20von%20Willebrand%20factor%20reduces%20its%20proteolysis%20by%20ADAMTS13&rft.jtitle=PloS%20one&rft.au=Zhang,%20Jingyu&rft.date=2011-07-11&rft.volume=6&rft.issue=7&rft.spage=e22157&rft.epage=e22157&rft.pages=e22157-e22157&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0022157&rft_dat=%3Cgale_plos_%3EA476885994%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1305410265&rft_id=info:pmid/21779388&rft_galeid=A476885994&rft_doaj_id=oai_doaj_org_article_ccf2a366e1574236b249b20eb0541d46&rfr_iscdi=true |