Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation

The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995-2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-06, Vol.6 (6), p.e21009
Hauptverfasser: Tamerius, James D, Comrie, Andrew C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e21009
container_title PloS one
container_volume 6
creator Tamerius, James D
Comrie, Andrew C
description The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995-2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a "primary" exposure season that spans August-March and a "secondary" season that spans April-June which are then used in subsequent analyses. We show that October-December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = -0.79, p = 0.004) and Pima (R = -0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the "grow and blow" hypothesis.
doi_str_mv 10.1371/journal.pone.0021009
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1304908319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476887755</galeid><doaj_id>oai_doaj_org_article_222e74ca661e46f9bdb3581f9f432f94</doaj_id><sourcerecordid>A476887755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-8060be15cd4c301f871f6029a5eccdb9c108788dc4eb000309917e2b4df14ef93</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QHBMWLGU-atEluhGHwY3Bhwa_bkCYnM1k6zdi04vjrTZ3uMpW9kF708PY570lO3yx7SmBBKCdvrkPfNrpe7EODC4CcAMh72TmRNJ-XOdD7J_VZ9ijGa4CCirJ8mJ3lhAMpJJxnn1bBGG998DbsDiZEH2e-SQo2BlM1W7b-d2j0bN-i9aZDO6sOs4g6JrEeVOP3vtOdD83j7IHTdcQn4_si-_b-3dfVx_nl1Yf1ank5N6Uk3VxACRWSwlhmKBAnOHEl5FIXaIytpCEguBDWMKwAgIKUhGNeMesIQyfpRfb86LuvQ1TjHqIiFJgEQclArI-EDfpa7Vu_0-1BBe3VXyG0G6XbzpsaVZ7nyJnRZUmQlU5WtqKFIE46RnMnWfJ6O07rqx1ag03X6npiOv3S-K3ahJ-KEiIEgWTwajRow48eY6d2Phqsa91g6KMSnHJgnA6jXvxD3n25kdrodH7fuJDGmsFTLRkvheC8KBK1uINKj8WdNykzzid90vB60pCYDn91G93HqNZfPv8_e_V9yr48Ybeo624bQ90PiYlTkB1B04YYW3S3OyaghsjfbEMNkVdj5FPbs9P_c9t0k3H6B312-5k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304908319</pqid></control><display><type>article</type><title>Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Tamerius, James D ; Comrie, Andrew C</creator><contributor>Deepe, George</contributor><creatorcontrib>Tamerius, James D ; Comrie, Andrew C ; Deepe, George</creatorcontrib><description>The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995-2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a "primary" exposure season that spans August-March and a "secondary" season that spans April-June which are then used in subsequent analyses. We show that October-December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = -0.79, p = 0.004) and Pima (R = -0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the "grow and blow" hypothesis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0021009</identifier><identifier>PMID: 21701590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Arizona - epidemiology ; Autocorrelation ; Climate ; Coccidioides ; Coccidioidomycosis ; Coccidioidomycosis - epidemiology ; Data processing ; Earth Sciences ; Exposure ; Fever ; Fungi ; Genomes ; Health services ; Health surveillance ; Humans ; Hypotheses ; Incidence ; Infections ; Landscape ecology ; Medicine ; Pathogens ; Pneumonia ; Population ; Precipitation ; Precipitation (Meteorology) ; Public health ; Seasonal precipitation ; Seasonal variability ; Seasonal variations ; Seasons ; Summer precipitation ; Surveillance ; Time series ; Weather forecasting</subject><ispartof>PloS one, 2011-06, Vol.6 (6), p.e21009</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Tamerius, Comrie. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Tamerius, Comrie. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-8060be15cd4c301f871f6029a5eccdb9c108788dc4eb000309917e2b4df14ef93</citedby><cites>FETCH-LOGICAL-c691t-8060be15cd4c301f871f6029a5eccdb9c108788dc4eb000309917e2b4df14ef93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118810/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118810/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21701590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Deepe, George</contributor><creatorcontrib>Tamerius, James D</creatorcontrib><creatorcontrib>Comrie, Andrew C</creatorcontrib><title>Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995-2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a "primary" exposure season that spans August-March and a "secondary" season that spans April-June which are then used in subsequent analyses. We show that October-December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = -0.79, p = 0.004) and Pima (R = -0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the "grow and blow" hypothesis.</description><subject>Analysis</subject><subject>Arizona - epidemiology</subject><subject>Autocorrelation</subject><subject>Climate</subject><subject>Coccidioides</subject><subject>Coccidioidomycosis</subject><subject>Coccidioidomycosis - epidemiology</subject><subject>Data processing</subject><subject>Earth Sciences</subject><subject>Exposure</subject><subject>Fever</subject><subject>Fungi</subject><subject>Genomes</subject><subject>Health services</subject><subject>Health surveillance</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Incidence</subject><subject>Infections</subject><subject>Landscape ecology</subject><subject>Medicine</subject><subject>Pathogens</subject><subject>Pneumonia</subject><subject>Population</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Public health</subject><subject>Seasonal precipitation</subject><subject>Seasonal variability</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>Summer precipitation</subject><subject>Surveillance</subject><subject>Time series</subject><subject>Weather forecasting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QHBMWLGU-atEluhGHwY3Bhwa_bkCYnM1k6zdi04vjrTZ3uMpW9kF708PY570lO3yx7SmBBKCdvrkPfNrpe7EODC4CcAMh72TmRNJ-XOdD7J_VZ9ijGa4CCirJ8mJ3lhAMpJJxnn1bBGG998DbsDiZEH2e-SQo2BlM1W7b-d2j0bN-i9aZDO6sOs4g6JrEeVOP3vtOdD83j7IHTdcQn4_si-_b-3dfVx_nl1Yf1ank5N6Uk3VxACRWSwlhmKBAnOHEl5FIXaIytpCEguBDWMKwAgIKUhGNeMesIQyfpRfb86LuvQ1TjHqIiFJgEQclArI-EDfpa7Vu_0-1BBe3VXyG0G6XbzpsaVZ7nyJnRZUmQlU5WtqKFIE46RnMnWfJ6O07rqx1ag03X6npiOv3S-K3ahJ-KEiIEgWTwajRow48eY6d2Phqsa91g6KMSnHJgnA6jXvxD3n25kdrodH7fuJDGmsFTLRkvheC8KBK1uINKj8WdNykzzid90vB60pCYDn91G93HqNZfPv8_e_V9yr48Ybeo624bQ90PiYlTkB1B04YYW3S3OyaghsjfbEMNkVdj5FPbs9P_c9t0k3H6B312-5k</recordid><startdate>20110620</startdate><enddate>20110620</enddate><creator>Tamerius, James D</creator><creator>Comrie, Andrew C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110620</creationdate><title>Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation</title><author>Tamerius, James D ; Comrie, Andrew C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-8060be15cd4c301f871f6029a5eccdb9c108788dc4eb000309917e2b4df14ef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Arizona - epidemiology</topic><topic>Autocorrelation</topic><topic>Climate</topic><topic>Coccidioides</topic><topic>Coccidioidomycosis</topic><topic>Coccidioidomycosis - epidemiology</topic><topic>Data processing</topic><topic>Earth Sciences</topic><topic>Exposure</topic><topic>Fever</topic><topic>Fungi</topic><topic>Genomes</topic><topic>Health services</topic><topic>Health surveillance</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Incidence</topic><topic>Infections</topic><topic>Landscape ecology</topic><topic>Medicine</topic><topic>Pathogens</topic><topic>Pneumonia</topic><topic>Population</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Public health</topic><topic>Seasonal precipitation</topic><topic>Seasonal variability</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>Summer precipitation</topic><topic>Surveillance</topic><topic>Time series</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamerius, James D</creatorcontrib><creatorcontrib>Comrie, Andrew C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamerius, James D</au><au>Comrie, Andrew C</au><au>Deepe, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-06-20</date><risdate>2011</risdate><volume>6</volume><issue>6</issue><spage>e21009</spage><pages>e21009-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The environmental mechanisms that determine the inter-annual and seasonal variability in incidence of coccidioidomycosis are unclear. In this study, we use Arizona coccidioidomycosis case data for 1995-2006 to generate a timeseries of monthly estimates of exposure rates in Maricopa County, AZ and Pima County, AZ. We reveal a seasonal autocorrelation structure for exposure rates in both Maricopa County and Pima County which indicates that exposure rates are strongly related from the fall to the spring. An abrupt end to this autocorrelation relationship occurs near the the onset of the summer precipitation season and increasing exposure rates related to the subsequent season. The identification of the autocorrelation structure enabled us to construct a "primary" exposure season that spans August-March and a "secondary" season that spans April-June which are then used in subsequent analyses. We show that October-December precipitation is positively associated with rates of exposure for the primary exposure season in both Maricopa County (R = 0.72, p = 0.012) and Pima County (R = 0.69, p = 0.019). In addition, exposure rates during the primary exposure seasons are negatively associated with concurrent precipitation in Maricopa (R = -0.79, p = 0.004) and Pima (R = -0.64, p = 0.019), possibly due to reduced spore dispersion. These associations enabled the generation of models to estimate exposure rates for the primary exposure season. The models explain 69% (p = 0.009) and 54% (p = 0.045) of the variance in the study period for Maricopa and Pima counties, respectively. We did not find any significant predictors for exposure rates during the secondary season. This study builds on previous studies examining the causes of temporal fluctuations in coccidioidomycosis, and corroborates the "grow and blow" hypothesis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21701590</pmid><doi>10.1371/journal.pone.0021009</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-06, Vol.6 (6), p.e21009
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1304908319
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Arizona - epidemiology
Autocorrelation
Climate
Coccidioides
Coccidioidomycosis
Coccidioidomycosis - epidemiology
Data processing
Earth Sciences
Exposure
Fever
Fungi
Genomes
Health services
Health surveillance
Humans
Hypotheses
Incidence
Infections
Landscape ecology
Medicine
Pathogens
Pneumonia
Population
Precipitation
Precipitation (Meteorology)
Public health
Seasonal precipitation
Seasonal variability
Seasonal variations
Seasons
Summer precipitation
Surveillance
Time series
Weather forecasting
title Coccidioidomycosis incidence in Arizona predicted by seasonal precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coccidioidomycosis%20incidence%20in%20Arizona%20predicted%20by%20seasonal%20precipitation&rft.jtitle=PloS%20one&rft.au=Tamerius,%20James%20D&rft.date=2011-06-20&rft.volume=6&rft.issue=6&rft.spage=e21009&rft.pages=e21009-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0021009&rft_dat=%3Cgale_plos_%3EA476887755%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304908319&rft_id=info:pmid/21701590&rft_galeid=A476887755&rft_doaj_id=oai_doaj_org_article_222e74ca661e46f9bdb3581f9f432f94&rfr_iscdi=true