Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat

We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Male Sprague-Da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-06, Vol.6 (6), p.e21285-e21285
Hauptverfasser: Chopra, Mani, Golden, Honey B, Mullapudi, Srinivas, Dowhan, William, Dostal, David E, Sharma, Avadhesh C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e21285
container_issue 6
container_start_page e21285
container_title PloS one
container_volume 6
creator Chopra, Mani
Golden, Honey B
Mullapudi, Srinivas
Dowhan, William
Dostal, David E
Sharma, Avadhesh C
description We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Male Sprague-Dawley rats (350-400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (-40%) and at 6 hr post-sepsis (-20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. The data suggest that Bax activation is an upstream event that may precede the opening of the mitoK(ATP) channels in sepsis. We concluded that mitoK(ATP) channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.
doi_str_mv 10.1371/journal.pone.0021285
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1304811205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476887696</galeid><doaj_id>oai_doaj_org_article_ea5949b264524b13a43448ce153b2351</doaj_id><sourcerecordid>A476887696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-8b9064c5c29dc2ca8b752b600d6515072dee8fcddf0e719b1dc5e8e684dcaaaf3</originalsourceid><addsrcrecordid>eNqNk0tr3DAQx01padJtv0FpDYWWHnarl2X5Ugihj4WUQF9XIUvjXQXZ2kh26H77ylknrEsORQdJo9_8RxrNZNlLjFaYlvjDlR9Cp9xq5ztYIUQwEcWj7BRXlCw5QfTx0fokexbjFUIFFZw_zU4ILjGpBDnN5DdvBqd667vcN3m791oFY5XLW9t7vfWdCbc70FvV2djG3AzBdps8wg0EyHfe7Vurg69HLMIu2pjbLu-3kAfVP8-eNMpFeDHNi-zX508_z78uLy6_rM_PLpaaV7hfirpCnOlCk8poopWoy4LUHCHDC1ygkhgA0WhjGgQlrmpsdAECuGBGK6UausheH3R3zkc55SZKTBETGJP08kW2PhDGqyu5C7ZVYS-9svLW4MNGqtBb7UCCKipW1YSzgrAaU8UoY0IDLmhNaIGT1scp2lC3YDR0fVBuJjo_6exWbvyNpBhXvBwF3k0CwV8PEHvZ2qjBOdWBH6IUJSMVF1wk8s0_5MOPm6iNSve3XeNTWD1qyjNWciFKXvFErR6g0jCQvjDVUWOTfebwfuaQmB7-9Bs1xCjXP77_P3v5e86-PWK3oFy_jd4NYxnGOcgOYCqwGAM09znGSI5tcJcNObaBnNogub06_p97p7u6p38B7TMEAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304811205</pqid></control><display><type>article</type><title>Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Chopra, Mani ; Golden, Honey B ; Mullapudi, Srinivas ; Dowhan, William ; Dostal, David E ; Sharma, Avadhesh C</creator><creatorcontrib>Chopra, Mani ; Golden, Honey B ; Mullapudi, Srinivas ; Dowhan, William ; Dostal, David E ; Sharma, Avadhesh C</creatorcontrib><description>We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Male Sprague-Dawley rats (350-400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (-40%) and at 6 hr post-sepsis (-20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. The data suggest that Bax activation is an upstream event that may precede the opening of the mitoK(ATP) channels in sepsis. We concluded that mitoK(ATP) channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0021285</identifier><identifier>PMID: 21712982</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anion channels ; Anti-Arrhythmia Agents - pharmacology ; Apoptosis ; Bax protein ; bcl-2-Associated X Protein - metabolism ; Biochemistry ; Biology ; Body Temperature - drug effects ; Cardiac output ; Cardiology ; Cecum ; Channels ; Contractility ; Cytochrome ; Cytochrome c ; Cytochromes c - metabolism ; Decanoic Acids - metabolism ; Decanoic Acids - pharmacology ; Dentistry ; Dextrose ; EKG ; Electrocardiography ; Heart ; Heart diseases ; Hemodynamics ; High definition television ; Hydroxy Acids - metabolism ; Hydroxy Acids - pharmacology ; Infection ; Infusion ; Inoculum ; Kinases ; Laboratories ; Male ; Medicine ; Membrane permeability ; Membrane potential ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Molecular biology ; Mortality ; Muscle contraction ; Myocardial Contraction - drug effects ; Myocardium - cytology ; Myocardium - metabolism ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Norepinephrine ; Permeability ; Potassium Channel Blockers - metabolism ; Potassium Channel Blockers - pharmacology ; Potassium Channels - metabolism ; Pretreatment ; Proteins ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Rodents ; Science ; Sepsis ; Sepsis - microbiology ; Sepsis - mortality ; Sepsis - physiopathology ; Tumor Necrosis Factor-alpha - metabolism ; Ultrasonic imaging ; Ventricle ; Voltage-Dependent Anion Channel 1 - metabolism</subject><ispartof>PloS one, 2011-06, Vol.6 (6), p.e21285-e21285</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Chopra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Chopra et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-8b9064c5c29dc2ca8b752b600d6515072dee8fcddf0e719b1dc5e8e684dcaaaf3</citedby><cites>FETCH-LOGICAL-c691t-8b9064c5c29dc2ca8b752b600d6515072dee8fcddf0e719b1dc5e8e684dcaaaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119671/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119671/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21712982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chopra, Mani</creatorcontrib><creatorcontrib>Golden, Honey B</creatorcontrib><creatorcontrib>Mullapudi, Srinivas</creatorcontrib><creatorcontrib>Dowhan, William</creatorcontrib><creatorcontrib>Dostal, David E</creatorcontrib><creatorcontrib>Sharma, Avadhesh C</creatorcontrib><title>Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Male Sprague-Dawley rats (350-400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (-40%) and at 6 hr post-sepsis (-20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. The data suggest that Bax activation is an upstream event that may precede the opening of the mitoK(ATP) channels in sepsis. We concluded that mitoK(ATP) channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.</description><subject>Animals</subject><subject>Anion channels</subject><subject>Anti-Arrhythmia Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Bax protein</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Body Temperature - drug effects</subject><subject>Cardiac output</subject><subject>Cardiology</subject><subject>Cecum</subject><subject>Channels</subject><subject>Contractility</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes c - metabolism</subject><subject>Decanoic Acids - metabolism</subject><subject>Decanoic Acids - pharmacology</subject><subject>Dentistry</subject><subject>Dextrose</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Hemodynamics</subject><subject>High definition television</subject><subject>Hydroxy Acids - metabolism</subject><subject>Hydroxy Acids - pharmacology</subject><subject>Infection</subject><subject>Infusion</subject><subject>Inoculum</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medicine</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Molecular biology</subject><subject>Mortality</subject><subject>Muscle contraction</subject><subject>Myocardial Contraction - drug effects</subject><subject>Myocardium - cytology</subject><subject>Myocardium - metabolism</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Norepinephrine</subject><subject>Permeability</subject><subject>Potassium Channel Blockers - metabolism</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels - metabolism</subject><subject>Pretreatment</subject><subject>Proteins</subject><subject>Random Allocation</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rodents</subject><subject>Science</subject><subject>Sepsis</subject><subject>Sepsis - microbiology</subject><subject>Sepsis - mortality</subject><subject>Sepsis - physiopathology</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Ultrasonic imaging</subject><subject>Ventricle</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQx01padJtv0FpDYWWHnarl2X5Ugihj4WUQF9XIUvjXQXZ2kh26H77ylknrEsORQdJo9_8RxrNZNlLjFaYlvjDlR9Cp9xq5ztYIUQwEcWj7BRXlCw5QfTx0fokexbjFUIFFZw_zU4ILjGpBDnN5DdvBqd667vcN3m791oFY5XLW9t7vfWdCbc70FvV2djG3AzBdps8wg0EyHfe7Vurg69HLMIu2pjbLu-3kAfVP8-eNMpFeDHNi-zX508_z78uLy6_rM_PLpaaV7hfirpCnOlCk8poopWoy4LUHCHDC1ygkhgA0WhjGgQlrmpsdAECuGBGK6UausheH3R3zkc55SZKTBETGJP08kW2PhDGqyu5C7ZVYS-9svLW4MNGqtBb7UCCKipW1YSzgrAaU8UoY0IDLmhNaIGT1scp2lC3YDR0fVBuJjo_6exWbvyNpBhXvBwF3k0CwV8PEHvZ2qjBOdWBH6IUJSMVF1wk8s0_5MOPm6iNSve3XeNTWD1qyjNWciFKXvFErR6g0jCQvjDVUWOTfebwfuaQmB7-9Bs1xCjXP77_P3v5e86-PWK3oFy_jd4NYxnGOcgOYCqwGAM09znGSI5tcJcNObaBnNogub06_p97p7u6p38B7TMEAQ</recordid><startdate>20110621</startdate><enddate>20110621</enddate><creator>Chopra, Mani</creator><creator>Golden, Honey B</creator><creator>Mullapudi, Srinivas</creator><creator>Dowhan, William</creator><creator>Dostal, David E</creator><creator>Sharma, Avadhesh C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110621</creationdate><title>Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat</title><author>Chopra, Mani ; Golden, Honey B ; Mullapudi, Srinivas ; Dowhan, William ; Dostal, David E ; Sharma, Avadhesh C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-8b9064c5c29dc2ca8b752b600d6515072dee8fcddf0e719b1dc5e8e684dcaaaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Anion channels</topic><topic>Anti-Arrhythmia Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Bax protein</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Body Temperature - drug effects</topic><topic>Cardiac output</topic><topic>Cardiology</topic><topic>Cecum</topic><topic>Channels</topic><topic>Contractility</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes c - metabolism</topic><topic>Decanoic Acids - metabolism</topic><topic>Decanoic Acids - pharmacology</topic><topic>Dentistry</topic><topic>Dextrose</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Hemodynamics</topic><topic>High definition television</topic><topic>Hydroxy Acids - metabolism</topic><topic>Hydroxy Acids - pharmacology</topic><topic>Infection</topic><topic>Infusion</topic><topic>Inoculum</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medicine</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Molecular biology</topic><topic>Mortality</topic><topic>Muscle contraction</topic><topic>Myocardial Contraction - drug effects</topic><topic>Myocardium - cytology</topic><topic>Myocardium - metabolism</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Norepinephrine</topic><topic>Permeability</topic><topic>Potassium Channel Blockers - metabolism</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels - metabolism</topic><topic>Pretreatment</topic><topic>Proteins</topic><topic>Random Allocation</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rodents</topic><topic>Science</topic><topic>Sepsis</topic><topic>Sepsis - microbiology</topic><topic>Sepsis - mortality</topic><topic>Sepsis - physiopathology</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Ultrasonic imaging</topic><topic>Ventricle</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Mani</creatorcontrib><creatorcontrib>Golden, Honey B</creatorcontrib><creatorcontrib>Mullapudi, Srinivas</creatorcontrib><creatorcontrib>Dowhan, William</creatorcontrib><creatorcontrib>Dostal, David E</creatorcontrib><creatorcontrib>Sharma, Avadhesh C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chopra, Mani</au><au>Golden, Honey B</au><au>Mullapudi, Srinivas</au><au>Dowhan, William</au><au>Dostal, David E</au><au>Sharma, Avadhesh C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-06-21</date><risdate>2011</risdate><volume>6</volume><issue>6</issue><spage>e21285</spage><epage>e21285</epage><pages>e21285-e21285</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. Male Sprague-Dawley rats (350-400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (-40%) and at 6 hr post-sepsis (-20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. The data suggest that Bax activation is an upstream event that may precede the opening of the mitoK(ATP) channels in sepsis. We concluded that mitoK(ATP) channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21712982</pmid><doi>10.1371/journal.pone.0021285</doi><tpages>e21285</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-06, Vol.6 (6), p.e21285-e21285
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1304811205
source PubMed (Medline); MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animals
Anion channels
Anti-Arrhythmia Agents - pharmacology
Apoptosis
Bax protein
bcl-2-Associated X Protein - metabolism
Biochemistry
Biology
Body Temperature - drug effects
Cardiac output
Cardiology
Cecum
Channels
Contractility
Cytochrome
Cytochrome c
Cytochromes c - metabolism
Decanoic Acids - metabolism
Decanoic Acids - pharmacology
Dentistry
Dextrose
EKG
Electrocardiography
Heart
Heart diseases
Hemodynamics
High definition television
Hydroxy Acids - metabolism
Hydroxy Acids - pharmacology
Infection
Infusion
Inoculum
Kinases
Laboratories
Male
Medicine
Membrane permeability
Membrane potential
Membrane Potential, Mitochondrial - drug effects
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Molecular biology
Mortality
Muscle contraction
Myocardial Contraction - drug effects
Myocardium - cytology
Myocardium - metabolism
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Norepinephrine
Permeability
Potassium Channel Blockers - metabolism
Potassium Channel Blockers - pharmacology
Potassium Channels - metabolism
Pretreatment
Proteins
Random Allocation
Rats
Rats, Sprague-Dawley
Rodents
Science
Sepsis
Sepsis - microbiology
Sepsis - mortality
Sepsis - physiopathology
Tumor Necrosis Factor-alpha - metabolism
Ultrasonic imaging
Ventricle
Voltage-Dependent Anion Channel 1 - metabolism
title Modulation of myocardial mitochondrial mechanisms during severe polymicrobial sepsis in the rat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20myocardial%20mitochondrial%20mechanisms%20during%20severe%20polymicrobial%20sepsis%20in%20the%20rat&rft.jtitle=PloS%20one&rft.au=Chopra,%20Mani&rft.date=2011-06-21&rft.volume=6&rft.issue=6&rft.spage=e21285&rft.epage=e21285&rft.pages=e21285-e21285&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0021285&rft_dat=%3Cgale_plos_%3EA476887696%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304811205&rft_id=info:pmid/21712982&rft_galeid=A476887696&rft_doaj_id=oai_doaj_org_article_ea5949b264524b13a43448ce153b2351&rfr_iscdi=true