Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice

Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-06, Vol.6 (6), p.e20944
Hauptverfasser: Neyrinck, Audrey M, Possemiers, Sam, Druart, Céline, Van de Wiele, Tom, De Backer, Fabienne, Cani, Patrice D, Larondelle, Yvan, Delzenne, Nathalie M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e20944
container_title PloS one
container_volume 6
creator Neyrinck, Audrey M
Possemiers, Sam
Druart, Céline
Van de Wiele, Tom
De Backer, Fabienne
Cani, Patrice D
Larondelle, Yvan
Delzenne, Nathalie M
description Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.
doi_str_mv 10.1371/journal.pone.0020944
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1304636265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476888348</galeid><doaj_id>oai_doaj_org_article_e0b9af0e393f4f8a81edfffbaf616be8</doaj_id><sourcerecordid>A476888348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-ab43bf58ad605eeda14da32aa3ad688e2adb2940f84bf6168577da127f6cae383</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQaFQ6G4ky5a9N4U09LAQSEkPt2JkjXYVvNZWktPkNfrElbNOWEMLRRcext_8M_zSZNlzRueMV-z40vW-g3a-dR3OKc3poigeZIdswfOZyCl_uBcfZE9CuKS05LUQj7ODnIlFmVf8MPv9xaOyLtqGoDHYxECcIb_WCJGAB2U7d33TQkc8thBRk-hIXCOxXeMRwhAQZY3VTkET0Vt4Sy5cQNWnkECnyfvbvLMaw3FqduUiti0MddpinNlO903SdQqT2sY2-DR7ZKAN-Gz8HmXfP374dvp5dnb-aXl6cjZrqrKKM1AFV6asQQtaImpghQaeA_CUqWvMQat8UVBTF8oIJuqyqhKUV0Y0gLzmR9nLne62dUGOdgbJOC0EF7koE7HcEdrBpdx6uwF_Ix1YeZtwfiXBJ-talEjVAgxFvuCmMDXUDLUxRsHQWuHQ7d3YrVcb1A120UM7EZ3-6exartyV5IyxQogk8GoU8O5njyH-Y-SRWkGaynbGJbFmY0MjT4oq-VLzYhhm_hcqHY3pBtKDMjblJwVvJgWJiXgdV9CHIJdfL_6fPf8xZV_vsenVtXEdXNtH67owBYsd2HgXgkdz7xyjctiHOzfksA9y3IdU9mLf9fuiuwXgfwCjDAoj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304636265</pqid></control><display><type>article</type><title>Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Neyrinck, Audrey M ; Possemiers, Sam ; Druart, Céline ; Van de Wiele, Tom ; De Backer, Fabienne ; Cani, Patrice D ; Larondelle, Yvan ; Delzenne, Nathalie M</creator><creatorcontrib>Neyrinck, Audrey M ; Possemiers, Sam ; Druart, Céline ; Van de Wiele, Tom ; De Backer, Fabienne ; Cani, Patrice D ; Larondelle, Yvan ; Delzenne, Nathalie M</creatorcontrib><description>Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0020944</identifier><identifier>PMID: 21695273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipose tissue ; Agriculture ; Analysis ; Animals ; Arabinoxylans ; Bacteria ; Bacterial Load - drug effects ; Bacteroides - physiology ; Bifidobacterium - physiology ; Biology ; Biomarkers - metabolism ; Body weight ; Body Weight - drug effects ; Body weight gain ; Carbohydrates ; Chemistry ; Cholesterol ; Cholesterol - blood ; Colon ; Correlation analysis ; Diet ; Diet - adverse effects ; Dietary Fats - adverse effects ; Dysbacteriosis ; Ecology ; Enzymatic activity ; Enzyme activity ; Fat metabolism ; Fatty acids ; Feed additives ; Fermentation ; Food ; Gene expression ; Gene Expression Regulation - drug effects ; Glucose ; High fat diet ; Inflammation ; Insulin ; Insulin Resistance ; Intestinal microflora ; Intestines - drug effects ; Intestines - microbiology ; Laboratory animals ; Lactobacillus paracasei ; Linoleic Acids, Conjugated - metabolism ; Lipid metabolism ; Lipids ; Male ; Medicine ; Metabolism ; Metagenome - drug effects ; Metagenome - physiology ; Mice ; Mice, Inbred C57BL ; Microbiota ; Microbiota (Symbiotic organisms) ; Molecular Weight ; Nutrients ; Nutrition research ; Obesity ; Obesity - diet therapy ; Obesity - etiology ; Obesity - metabolism ; Obesity - microbiology ; Oxidation ; Physiological aspects ; Polymerization ; Prebiotics ; Prevotella - physiology ; Proteins ; Rodents ; Studies ; Subcutaneous Fat - drug effects ; Subcutaneous Fat - metabolism ; Triticum - chemistry ; Wheat ; Xylans - chemistry ; Xylans - pharmacology ; Xylans - therapeutic use</subject><ispartof>PloS one, 2011-06, Vol.6 (6), p.e20944</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Neyrinck et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Neyrinck et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-ab43bf58ad605eeda14da32aa3ad688e2adb2940f84bf6168577da127f6cae383</citedby><cites>FETCH-LOGICAL-c757t-ab43bf58ad605eeda14da32aa3ad688e2adb2940f84bf6168577da127f6cae383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111466/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111466/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21695273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neyrinck, Audrey M</creatorcontrib><creatorcontrib>Possemiers, Sam</creatorcontrib><creatorcontrib>Druart, Céline</creatorcontrib><creatorcontrib>Van de Wiele, Tom</creatorcontrib><creatorcontrib>De Backer, Fabienne</creatorcontrib><creatorcontrib>Cani, Patrice D</creatorcontrib><creatorcontrib>Larondelle, Yvan</creatorcontrib><creatorcontrib>Delzenne, Nathalie M</creatorcontrib><title>Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.</description><subject>Adipose tissue</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Animals</subject><subject>Arabinoxylans</subject><subject>Bacteria</subject><subject>Bacterial Load - drug effects</subject><subject>Bacteroides - physiology</subject><subject>Bifidobacterium - physiology</subject><subject>Biology</subject><subject>Biomarkers - metabolism</subject><subject>Body weight</subject><subject>Body Weight - drug effects</subject><subject>Body weight gain</subject><subject>Carbohydrates</subject><subject>Chemistry</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Colon</subject><subject>Correlation analysis</subject><subject>Diet</subject><subject>Diet - adverse effects</subject><subject>Dietary Fats - adverse effects</subject><subject>Dysbacteriosis</subject><subject>Ecology</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Fat metabolism</subject><subject>Fatty acids</subject><subject>Feed additives</subject><subject>Fermentation</subject><subject>Food</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glucose</subject><subject>High fat diet</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin Resistance</subject><subject>Intestinal microflora</subject><subject>Intestines - drug effects</subject><subject>Intestines - microbiology</subject><subject>Laboratory animals</subject><subject>Lactobacillus paracasei</subject><subject>Linoleic Acids, Conjugated - metabolism</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metagenome - drug effects</subject><subject>Metagenome - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Molecular Weight</subject><subject>Nutrients</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Obesity - diet therapy</subject><subject>Obesity - etiology</subject><subject>Obesity - metabolism</subject><subject>Obesity - microbiology</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Polymerization</subject><subject>Prebiotics</subject><subject>Prevotella - physiology</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Studies</subject><subject>Subcutaneous Fat - drug effects</subject><subject>Subcutaneous Fat - metabolism</subject><subject>Triticum - chemistry</subject><subject>Wheat</subject><subject>Xylans - chemistry</subject><subject>Xylans - pharmacology</subject><subject>Xylans - therapeutic use</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQaFQ6G4ky5a9N4U09LAQSEkPt2JkjXYVvNZWktPkNfrElbNOWEMLRRcext_8M_zSZNlzRueMV-z40vW-g3a-dR3OKc3poigeZIdswfOZyCl_uBcfZE9CuKS05LUQj7ODnIlFmVf8MPv9xaOyLtqGoDHYxECcIb_WCJGAB2U7d33TQkc8thBRk-hIXCOxXeMRwhAQZY3VTkET0Vt4Sy5cQNWnkECnyfvbvLMaw3FqduUiti0MddpinNlO903SdQqT2sY2-DR7ZKAN-Gz8HmXfP374dvp5dnb-aXl6cjZrqrKKM1AFV6asQQtaImpghQaeA_CUqWvMQat8UVBTF8oIJuqyqhKUV0Y0gLzmR9nLne62dUGOdgbJOC0EF7koE7HcEdrBpdx6uwF_Ix1YeZtwfiXBJ-talEjVAgxFvuCmMDXUDLUxRsHQWuHQ7d3YrVcb1A120UM7EZ3-6exartyV5IyxQogk8GoU8O5njyH-Y-SRWkGaynbGJbFmY0MjT4oq-VLzYhhm_hcqHY3pBtKDMjblJwVvJgWJiXgdV9CHIJdfL_6fPf8xZV_vsenVtXEdXNtH67owBYsd2HgXgkdz7xyjctiHOzfksA9y3IdU9mLf9fuiuwXgfwCjDAoj</recordid><startdate>20110609</startdate><enddate>20110609</enddate><creator>Neyrinck, Audrey M</creator><creator>Possemiers, Sam</creator><creator>Druart, Céline</creator><creator>Van de Wiele, Tom</creator><creator>De Backer, Fabienne</creator><creator>Cani, Patrice D</creator><creator>Larondelle, Yvan</creator><creator>Delzenne, Nathalie M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110609</creationdate><title>Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice</title><author>Neyrinck, Audrey M ; Possemiers, Sam ; Druart, Céline ; Van de Wiele, Tom ; De Backer, Fabienne ; Cani, Patrice D ; Larondelle, Yvan ; Delzenne, Nathalie M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-ab43bf58ad605eeda14da32aa3ad688e2adb2940f84bf6168577da127f6cae383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adipose tissue</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Animals</topic><topic>Arabinoxylans</topic><topic>Bacteria</topic><topic>Bacterial Load - drug effects</topic><topic>Bacteroides - physiology</topic><topic>Bifidobacterium - physiology</topic><topic>Biology</topic><topic>Biomarkers - metabolism</topic><topic>Body weight</topic><topic>Body Weight - drug effects</topic><topic>Body weight gain</topic><topic>Carbohydrates</topic><topic>Chemistry</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Colon</topic><topic>Correlation analysis</topic><topic>Diet</topic><topic>Diet - adverse effects</topic><topic>Dietary Fats - adverse effects</topic><topic>Dysbacteriosis</topic><topic>Ecology</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Fat metabolism</topic><topic>Fatty acids</topic><topic>Feed additives</topic><topic>Fermentation</topic><topic>Food</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glucose</topic><topic>High fat diet</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin Resistance</topic><topic>Intestinal microflora</topic><topic>Intestines - drug effects</topic><topic>Intestines - microbiology</topic><topic>Laboratory animals</topic><topic>Lactobacillus paracasei</topic><topic>Linoleic Acids, Conjugated - metabolism</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metagenome - drug effects</topic><topic>Metagenome - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Molecular Weight</topic><topic>Nutrients</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Obesity - diet therapy</topic><topic>Obesity - etiology</topic><topic>Obesity - metabolism</topic><topic>Obesity - microbiology</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Polymerization</topic><topic>Prebiotics</topic><topic>Prevotella - physiology</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Studies</topic><topic>Subcutaneous Fat - drug effects</topic><topic>Subcutaneous Fat - metabolism</topic><topic>Triticum - chemistry</topic><topic>Wheat</topic><topic>Xylans - chemistry</topic><topic>Xylans - pharmacology</topic><topic>Xylans - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neyrinck, Audrey M</creatorcontrib><creatorcontrib>Possemiers, Sam</creatorcontrib><creatorcontrib>Druart, Céline</creatorcontrib><creatorcontrib>Van de Wiele, Tom</creatorcontrib><creatorcontrib>De Backer, Fabienne</creatorcontrib><creatorcontrib>Cani, Patrice D</creatorcontrib><creatorcontrib>Larondelle, Yvan</creatorcontrib><creatorcontrib>Delzenne, Nathalie M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neyrinck, Audrey M</au><au>Possemiers, Sam</au><au>Druart, Céline</au><au>Van de Wiele, Tom</au><au>De Backer, Fabienne</au><au>Cani, Patrice D</au><au>Larondelle, Yvan</au><au>Delzenne, Nathalie M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-06-09</date><risdate>2011</risdate><volume>6</volume><issue>6</issue><spage>e20944</spage><pages>e20944-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Alterations in the composition of gut microbiota--known as dysbiosis--has been proposed to contribute to the development of obesity, thereby supporting the potential interest of nutrients targeting the gut with beneficial effect for host adiposity. We test the ability of a specific concentrate of water-extractable high molecular weight arabinoxylans (AX) from wheat to modulate both the gut microbiota and lipid metabolism in high-fat (HF) diet-induced obese mice. Mice were fed either a control diet (CT) or a HF diet, or a HF diet supplemented with AX (10% w/w) during 4 weeks. AX supplementation restored the number of bacteria that were decreased upon HF feeding, i.e. Bacteroides-Prevotella spp. and Roseburia spp. Importantly, AX treatment markedly increased caecal bifidobacteria content, in particular Bifidobacterium animalis lactis. This effect was accompanied by improvement of gut barrier function and by a lower circulating inflammatory marker. Interestingly, rumenic acid (C18:2 c9,t11) was increased in white adipose tissue due to AX treatment, suggesting the influence of gut bacterial metabolism on host tissue. In parallel, AX treatment decreased adipocyte size and HF diet-induced expression of genes mediating differentiation, fatty acid uptake, fatty acid oxidation and inflammation, and decreased a key lipogenic enzyme activity in the subcutaneous adipose tissue. Furthermore, AX treatment significantly decreased HF-induced adiposity, body weight gain, serum and hepatic cholesterol accumulation and insulin resistance. Correlation analysis reveals that Roseburia spp. and Bacteroides/Prevotella levels inversely correlate with these host metabolic parameters. Supplementation of a concentrate of water-extractable high molecular weight AX in the diet counteracted HF-induced gut dysbiosis together with an improvement of obesity and lipid-lowering effects. We postulate that hypocholesterolemic, anti-inflammatory and anti-obesity effects are related to changes in gut microbiota. These data support a role for wheat AX as interesting nutrients with prebiotic properties related to obesity prevention.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21695273</pmid><doi>10.1371/journal.pone.0020944</doi><tpages>e20944</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-06, Vol.6 (6), p.e20944
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1304636265
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adipose tissue
Agriculture
Analysis
Animals
Arabinoxylans
Bacteria
Bacterial Load - drug effects
Bacteroides - physiology
Bifidobacterium - physiology
Biology
Biomarkers - metabolism
Body weight
Body Weight - drug effects
Body weight gain
Carbohydrates
Chemistry
Cholesterol
Cholesterol - blood
Colon
Correlation analysis
Diet
Diet - adverse effects
Dietary Fats - adverse effects
Dysbacteriosis
Ecology
Enzymatic activity
Enzyme activity
Fat metabolism
Fatty acids
Feed additives
Fermentation
Food
Gene expression
Gene Expression Regulation - drug effects
Glucose
High fat diet
Inflammation
Insulin
Insulin Resistance
Intestinal microflora
Intestines - drug effects
Intestines - microbiology
Laboratory animals
Lactobacillus paracasei
Linoleic Acids, Conjugated - metabolism
Lipid metabolism
Lipids
Male
Medicine
Metabolism
Metagenome - drug effects
Metagenome - physiology
Mice
Mice, Inbred C57BL
Microbiota
Microbiota (Symbiotic organisms)
Molecular Weight
Nutrients
Nutrition research
Obesity
Obesity - diet therapy
Obesity - etiology
Obesity - metabolism
Obesity - microbiology
Oxidation
Physiological aspects
Polymerization
Prebiotics
Prevotella - physiology
Proteins
Rodents
Studies
Subcutaneous Fat - drug effects
Subcutaneous Fat - metabolism
Triticum - chemistry
Wheat
Xylans - chemistry
Xylans - pharmacology
Xylans - therapeutic use
title Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prebiotic%20effects%20of%20wheat%20arabinoxylan%20related%20to%20the%20increase%20in%20bifidobacteria,%20Roseburia%20and%20Bacteroides/Prevotella%20in%20diet-induced%20obese%20mice&rft.jtitle=PloS%20one&rft.au=Neyrinck,%20Audrey%20M&rft.date=2011-06-09&rft.volume=6&rft.issue=6&rft.spage=e20944&rft.pages=e20944-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0020944&rft_dat=%3Cgale_plos_%3EA476888348%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304636265&rft_id=info:pmid/21695273&rft_galeid=A476888348&rft_doaj_id=oai_doaj_org_article_e0b9af0e393f4f8a81edfffbaf616be8&rfr_iscdi=true