miR-132 mediates the integration of newborn neurons into the adult dentate gyrus
Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-05, Vol.6 (5), p.e19077-e19077 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e19077 |
---|---|
container_issue | 5 |
container_start_page | e19077 |
container_title | PloS one |
container_volume | 6 |
creator | Luikart, Bryan W Bensen, AeSoon L Washburn, Eric K Perederiy, Julia V Su, Kimmy G Li, Yun Kernie, Steven G Parada, Luis F Westbrook, Gary L |
description | Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo. |
doi_str_mv | 10.1371/journal.pone.0019077 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298566655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476891530</galeid><doaj_id>oai_doaj_org_article_cedff0d9ba10493d8f1187f79f40632f</doaj_id><sourcerecordid>A476891530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-3302da78ffbf54bc8f7e8815851453d80be4b3356ceb0c77aa1fb39d65934d123</originalsourceid><addsrcrecordid>eNqNkluL1DAcxYso7kW_gWhBUHyYMWma24uwLF4GFlbWy2tIc-lk6DRjkurutzfd6S5T2QfpQ0ryO-ffnJ6ieAHBEiIK32_8EHrZLXe-N0sAIAeUPiqOIUfVglQAPT54PypOYtwAgBEj5GlxVEECIWTVcfF1664WEFXl1mgnk4llWpvS9cm0QSbn-9Lbsjd_Gh_6vA7B93E89rec1EOXSm36lKVlexOG-Kx4YmUXzfNpPS1-fPr4_fzL4uLy8-r87GKhCIdpgRCotKTM2sbiulHMUsMYxAzDGiPNQGPqBiFMlGmAolRKaBvENcEc1RpW6LR4tffddT6KKYwoYMUZJoRgnInVntBebsQuuK0MN8JLJ243fGiFDMmpzghltLVA80ZCUPM83uZ0qKXc1oCgymavD9O0oclJqXzjILuZ6fykd2vR-t8CAU5IxbLB28kg-F-DiUlsXVSm62Rv_BAFI4wSijHI5Ot_yIcvN1GtzN_veuvzWDV6irOaEsYhRqPX8gEqP9psncrFsS7vzwTvZoLMJHOdWjnEKFbfrv6fvfw5Z98csGsju7SOvhvGhsU5WO9BFXyMwdj7jCEQY-_v0hBj78XU-yx7efh_7kV3RUd_AdXL_KY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298566655</pqid></control><display><type>article</type><title>miR-132 mediates the integration of newborn neurons into the adult dentate gyrus</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Luikart, Bryan W ; Bensen, AeSoon L ; Washburn, Eric K ; Perederiy, Julia V ; Su, Kimmy G ; Li, Yun ; Kernie, Steven G ; Parada, Luis F ; Westbrook, Gary L</creator><creatorcontrib>Luikart, Bryan W ; Bensen, AeSoon L ; Washburn, Eric K ; Perederiy, Julia V ; Su, Kimmy G ; Li, Yun ; Kernie, Steven G ; Parada, Luis F ; Westbrook, Gary L</creatorcontrib><description>Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0019077</identifier><identifier>PMID: 21611182</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging - metabolism ; Animals ; Animals, Newborn ; Biology ; Brain ; Breast cancer ; Cell Differentiation - genetics ; Circuits ; Dendritic Spines - metabolism ; Dentate gyrus ; Dentate Gyrus - cytology ; Dentate Gyrus - metabolism ; Developmental biology ; Discosoma ; DNA microarrays ; Excitatory Postsynaptic Potentials ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Genes ; Genes, Reporter - genetics ; Genomes ; Genomics ; Hearing loss ; HEK293 Cells ; Humans ; In vivo methods and tests ; Inflammation ; Inflammation - genetics ; Integration ; Journalists ; Metastasis ; Mice ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Mutation ; Neurogenesis ; Neurons ; Neurons - cytology ; Neurons - metabolism ; Newborn infants ; PC12 Cells ; Pheochromocytoma cells ; Proteins ; Rats ; Receptors, AMPA - metabolism ; Retroviridae ; Ribonucleic acid ; RNA ; Rodents ; Science ; Signal transduction ; Signal Transduction - genetics ; Signaling ; Stem cells ; Synapses ; Synaptogenesis</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e19077-e19077</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Luikart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Luikart et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-3302da78ffbf54bc8f7e8815851453d80be4b3356ceb0c77aa1fb39d65934d123</citedby><cites>FETCH-LOGICAL-c691t-3302da78ffbf54bc8f7e8815851453d80be4b3356ceb0c77aa1fb39d65934d123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096628/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3096628/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21611182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luikart, Bryan W</creatorcontrib><creatorcontrib>Bensen, AeSoon L</creatorcontrib><creatorcontrib>Washburn, Eric K</creatorcontrib><creatorcontrib>Perederiy, Julia V</creatorcontrib><creatorcontrib>Su, Kimmy G</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Kernie, Steven G</creatorcontrib><creatorcontrib>Parada, Luis F</creatorcontrib><creatorcontrib>Westbrook, Gary L</creatorcontrib><title>miR-132 mediates the integration of newborn neurons into the adult dentate gyrus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.</description><subject>Aging - metabolism</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biology</subject><subject>Brain</subject><subject>Breast cancer</subject><subject>Cell Differentiation - genetics</subject><subject>Circuits</subject><subject>Dendritic Spines - metabolism</subject><subject>Dentate gyrus</subject><subject>Dentate Gyrus - cytology</subject><subject>Dentate Gyrus - metabolism</subject><subject>Developmental biology</subject><subject>Discosoma</subject><subject>DNA microarrays</subject><subject>Excitatory Postsynaptic Potentials</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Genes, Reporter - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hearing loss</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Inflammation</subject><subject>Inflammation - genetics</subject><subject>Integration</subject><subject>Journalists</subject><subject>Metastasis</subject><subject>Mice</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Mutation</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Newborn infants</subject><subject>PC12 Cells</subject><subject>Pheochromocytoma cells</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, AMPA - metabolism</subject><subject>Retroviridae</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Science</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Synapses</subject><subject>Synaptogenesis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAcxYso7kW_gWhBUHyYMWma24uwLF4GFlbWy2tIc-lk6DRjkurutzfd6S5T2QfpQ0ryO-ffnJ6ieAHBEiIK32_8EHrZLXe-N0sAIAeUPiqOIUfVglQAPT54PypOYtwAgBEj5GlxVEECIWTVcfF1664WEFXl1mgnk4llWpvS9cm0QSbn-9Lbsjd_Gh_6vA7B93E89rec1EOXSm36lKVlexOG-Kx4YmUXzfNpPS1-fPr4_fzL4uLy8-r87GKhCIdpgRCotKTM2sbiulHMUsMYxAzDGiPNQGPqBiFMlGmAolRKaBvENcEc1RpW6LR4tffddT6KKYwoYMUZJoRgnInVntBebsQuuK0MN8JLJ243fGiFDMmpzghltLVA80ZCUPM83uZ0qKXc1oCgymavD9O0oclJqXzjILuZ6fykd2vR-t8CAU5IxbLB28kg-F-DiUlsXVSm62Rv_BAFI4wSijHI5Ot_yIcvN1GtzN_veuvzWDV6irOaEsYhRqPX8gEqP9psncrFsS7vzwTvZoLMJHOdWjnEKFbfrv6fvfw5Z98csGsju7SOvhvGhsU5WO9BFXyMwdj7jCEQY-_v0hBj78XU-yx7efh_7kV3RUd_AdXL_KY</recordid><startdate>20110517</startdate><enddate>20110517</enddate><creator>Luikart, Bryan W</creator><creator>Bensen, AeSoon L</creator><creator>Washburn, Eric K</creator><creator>Perederiy, Julia V</creator><creator>Su, Kimmy G</creator><creator>Li, Yun</creator><creator>Kernie, Steven G</creator><creator>Parada, Luis F</creator><creator>Westbrook, Gary L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110517</creationdate><title>miR-132 mediates the integration of newborn neurons into the adult dentate gyrus</title><author>Luikart, Bryan W ; Bensen, AeSoon L ; Washburn, Eric K ; Perederiy, Julia V ; Su, Kimmy G ; Li, Yun ; Kernie, Steven G ; Parada, Luis F ; Westbrook, Gary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-3302da78ffbf54bc8f7e8815851453d80be4b3356ceb0c77aa1fb39d65934d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aging - metabolism</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biology</topic><topic>Brain</topic><topic>Breast cancer</topic><topic>Cell Differentiation - genetics</topic><topic>Circuits</topic><topic>Dendritic Spines - metabolism</topic><topic>Dentate gyrus</topic><topic>Dentate Gyrus - cytology</topic><topic>Dentate Gyrus - metabolism</topic><topic>Developmental biology</topic><topic>Discosoma</topic><topic>DNA microarrays</topic><topic>Excitatory Postsynaptic Potentials</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Genes, Reporter - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hearing loss</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Inflammation</topic><topic>Inflammation - genetics</topic><topic>Integration</topic><topic>Journalists</topic><topic>Metastasis</topic><topic>Mice</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Mutation</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Newborn infants</topic><topic>PC12 Cells</topic><topic>Pheochromocytoma cells</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, AMPA - metabolism</topic><topic>Retroviridae</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Science</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Synapses</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luikart, Bryan W</creatorcontrib><creatorcontrib>Bensen, AeSoon L</creatorcontrib><creatorcontrib>Washburn, Eric K</creatorcontrib><creatorcontrib>Perederiy, Julia V</creatorcontrib><creatorcontrib>Su, Kimmy G</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Kernie, Steven G</creatorcontrib><creatorcontrib>Parada, Luis F</creatorcontrib><creatorcontrib>Westbrook, Gary L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luikart, Bryan W</au><au>Bensen, AeSoon L</au><au>Washburn, Eric K</au><au>Perederiy, Julia V</au><au>Su, Kimmy G</au><au>Li, Yun</au><au>Kernie, Steven G</au><au>Parada, Luis F</au><au>Westbrook, Gary L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-132 mediates the integration of newborn neurons into the adult dentate gyrus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-17</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e19077</spage><epage>e19077</epage><pages>e19077-e19077</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuronal activity enhances the elaboration of newborn neurons as they integrate into the synaptic circuitry of the adult brain. The role microRNAs play in the transduction of neuronal activity into growth and synapse formation is largely unknown. MicroRNAs can influence the expression of hundreds of genes and thus could regulate gene assemblies during processes like activity-dependent integration. Here, we developed viral-based methods for the in vivo detection and manipulation of the activity-dependent microRNA, miR-132, in the mouse hippocampus. We find, using lentiviral and retroviral reporters of miR-132 activity, that miR-132 is expressed at the right place and right time to influence the integration of newborn neurons. Retroviral knockdown of miR-132 using a specific 'sponge' containing multiple target sequences impaired the integration of newborn neurons into the excitatory synaptic circuitry of the adult brain. To assess potential miR-132 targets, we used a whole-genome microarray in PC12 cells, which have been used as a model of neuronal differentiation. miR-132 knockdown in PC12 cells resulted in the increased expression of hundreds of genes. Functional grouping indicated that genes involved in inflammatory/immune signaling were the most enriched class of genes induced by miR-132 knockdown. The correlation of miR-132 knockdown to increased proinflammatory molecular expression may indicate a mechanistic link whereby miR-132 functions as an endogenous mediator of activity-dependent integration in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21611182</pmid><doi>10.1371/journal.pone.0019077</doi><tpages>e19077</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-05, Vol.6 (5), p.e19077-e19077 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1298566655 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Aging - metabolism Animals Animals, Newborn Biology Brain Breast cancer Cell Differentiation - genetics Circuits Dendritic Spines - metabolism Dentate gyrus Dentate Gyrus - cytology Dentate Gyrus - metabolism Developmental biology Discosoma DNA microarrays Excitatory Postsynaptic Potentials Gene expression Gene Expression Regulation, Developmental Gene Knockdown Techniques Genes Genes, Reporter - genetics Genomes Genomics Hearing loss HEK293 Cells Humans In vivo methods and tests Inflammation Inflammation - genetics Integration Journalists Metastasis Mice MicroRNA MicroRNAs MicroRNAs - genetics MicroRNAs - metabolism miRNA Mutation Neurogenesis Neurons Neurons - cytology Neurons - metabolism Newborn infants PC12 Cells Pheochromocytoma cells Proteins Rats Receptors, AMPA - metabolism Retroviridae Ribonucleic acid RNA Rodents Science Signal transduction Signal Transduction - genetics Signaling Stem cells Synapses Synaptogenesis |
title | miR-132 mediates the integration of newborn neurons into the adult dentate gyrus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-132%20mediates%20the%20integration%20of%20newborn%20neurons%20into%20the%20adult%20dentate%20gyrus&rft.jtitle=PloS%20one&rft.au=Luikart,%20Bryan%20W&rft.date=2011-05-17&rft.volume=6&rft.issue=5&rft.spage=e19077&rft.epage=e19077&rft.pages=e19077-e19077&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0019077&rft_dat=%3Cgale_plos_%3EA476891530%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298566655&rft_id=info:pmid/21611182&rft_galeid=A476891530&rft_doaj_id=oai_doaj_org_article_cedff0d9ba10493d8f1187f79f40632f&rfr_iscdi=true |