Continuum molecular simulation of large conformational changes during ion-channel gating
A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gat...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-05, Vol.6 (5), p.e20186 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e20186 |
container_title | PloS one |
container_volume | 6 |
creator | Nekouzadeh, Ali Rudy, Yoram |
description | A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion-channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents. |
doi_str_mv | 10.1371/journal.pone.0020186 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298565193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476891147</galeid><doaj_id>oai_doaj_org_article_df61ac017d334c6796b6a68c9341dbc7</doaj_id><sourcerecordid>A476891147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-84d40fe656057c213fb2f9bd837dacad3368dc0ed0a501b8a959735f091620843</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjEnTfN0Iy-DHwMKCX3gX0iTtZEmT2aQV_femO91lKnvhVcrb57wnec8piucQrCGi8N1VGKOXbr0P3qwBqABk5EFxCjmqVqQC6OHR90nxJKUrADBihDwuTipIKlxjclr83AQ_WD-OfdkHZ9ToZCyT7fM52ODL0JZZ6Uypgm9D7G9U6Uq1k74zqdRjtL4rs7iaJG9c2WXGd0-LR610yTybz7Pi-8cP3zafVxeXn7ab84uVIhwOK1brGrSGYAIwVRVEbVO1vNEMUS2V1AgRphUwGkgMYMMkx5wi3AKenwBYjc6KlwffvQtJzKEkASvOMME5gUxsD4QO8krso-1l_COCtOJGCLETMg5WOSN0S6BUANLct1aEctIQSZjiqIa6UTR7vZ-7jU1vtDJ-iNItTJd_vN2JLvwSCHDGaJUN3swGMVyPJg2it0kZ56Q3YUyCEY4pqCjJ5Kt_yPsfN1OdzPe3eUa5rZo8xXlNCeMQ1tO11_dQU76mt3myprVZXxS8XRRkZjC_h06OKYnt1y__z17-WLKvj9idkW7YpeDGaavSEqwPoIohpWjau4whENP-36Yhpv0X8_7nshfH87krul149BeW2wB0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298565193</pqid></control><display><type>article</type><title>Continuum molecular simulation of large conformational changes during ion-channel gating</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Public Library of Science</source><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Nekouzadeh, Ali ; Rudy, Yoram</creator><creatorcontrib>Nekouzadeh, Ali ; Rudy, Yoram</creatorcontrib><description>A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion-channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0020186</identifier><identifier>PMID: 21625456</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biomedical engineering ; Cardiac arrhythmia ; Channel gating ; Chemistry ; Computer simulation ; Diffusion length ; Engineering ; Ion Channel Gating ; Lipids ; Mathematical models ; Models, Theoretical ; Permeability ; Physics ; Potassium channels (voltage-gated) ; Protein Conformation ; Proteins ; Simulation ; Statistical analysis ; Velocity ; Vibrations</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e20186</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Nekouzadeh, Rudy. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Nekouzadeh, Rudy. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-84d40fe656057c213fb2f9bd837dacad3368dc0ed0a501b8a959735f091620843</citedby><cites>FETCH-LOGICAL-c691t-84d40fe656057c213fb2f9bd837dacad3368dc0ed0a501b8a959735f091620843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21625456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nekouzadeh, Ali</creatorcontrib><creatorcontrib>Rudy, Yoram</creatorcontrib><title>Continuum molecular simulation of large conformational changes during ion-channel gating</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion-channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents.</description><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Cardiac arrhythmia</subject><subject>Channel gating</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Diffusion length</subject><subject>Engineering</subject><subject>Ion Channel Gating</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Permeability</subject><subject>Physics</subject><subject>Potassium channels (voltage-gated)</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Velocity</subject><subject>Vibrations</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjEnTfN0Iy-DHwMKCX3gX0iTtZEmT2aQV_femO91lKnvhVcrb57wnec8piucQrCGi8N1VGKOXbr0P3qwBqABk5EFxCjmqVqQC6OHR90nxJKUrADBihDwuTipIKlxjclr83AQ_WD-OfdkHZ9ToZCyT7fM52ODL0JZZ6Uypgm9D7G9U6Uq1k74zqdRjtL4rs7iaJG9c2WXGd0-LR610yTybz7Pi-8cP3zafVxeXn7ab84uVIhwOK1brGrSGYAIwVRVEbVO1vNEMUS2V1AgRphUwGkgMYMMkx5wi3AKenwBYjc6KlwffvQtJzKEkASvOMME5gUxsD4QO8krso-1l_COCtOJGCLETMg5WOSN0S6BUANLct1aEctIQSZjiqIa6UTR7vZ-7jU1vtDJ-iNItTJd_vN2JLvwSCHDGaJUN3swGMVyPJg2it0kZ56Q3YUyCEY4pqCjJ5Kt_yPsfN1OdzPe3eUa5rZo8xXlNCeMQ1tO11_dQU76mt3myprVZXxS8XRRkZjC_h06OKYnt1y__z17-WLKvj9idkW7YpeDGaavSEqwPoIohpWjau4whENP-36Yhpv0X8_7nshfH87krul149BeW2wB0</recordid><startdate>20110520</startdate><enddate>20110520</enddate><creator>Nekouzadeh, Ali</creator><creator>Rudy, Yoram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110520</creationdate><title>Continuum molecular simulation of large conformational changes during ion-channel gating</title><author>Nekouzadeh, Ali ; Rudy, Yoram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-84d40fe656057c213fb2f9bd837dacad3368dc0ed0a501b8a959735f091620843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Cardiac arrhythmia</topic><topic>Channel gating</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Diffusion length</topic><topic>Engineering</topic><topic>Ion Channel Gating</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Permeability</topic><topic>Physics</topic><topic>Potassium channels (voltage-gated)</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Velocity</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nekouzadeh, Ali</creatorcontrib><creatorcontrib>Rudy, Yoram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nekouzadeh, Ali</au><au>Rudy, Yoram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuum molecular simulation of large conformational changes during ion-channel gating</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-20</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e20186</spage><pages>e20186-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion-channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21625456</pmid><doi>10.1371/journal.pone.0020186</doi><tpages>e20186</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-05, Vol.6 (5), p.e20186 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1298565193 |
source | PubMed (Medline); MEDLINE; Public Library of Science; Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Biology Biomedical engineering Cardiac arrhythmia Channel gating Chemistry Computer simulation Diffusion length Engineering Ion Channel Gating Lipids Mathematical models Models, Theoretical Permeability Physics Potassium channels (voltage-gated) Protein Conformation Proteins Simulation Statistical analysis Velocity Vibrations |
title | Continuum molecular simulation of large conformational changes during ion-channel gating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuum%20molecular%20simulation%20of%20large%20conformational%20changes%20during%20ion-channel%20gating&rft.jtitle=PloS%20one&rft.au=Nekouzadeh,%20Ali&rft.date=2011-05-20&rft.volume=6&rft.issue=5&rft.spage=e20186&rft.pages=e20186-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0020186&rft_dat=%3Cgale_plos_%3EA476891147%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298565193&rft_id=info:pmid/21625456&rft_galeid=A476891147&rft_doaj_id=oai_doaj_org_article_df61ac017d334c6796b6a68c9341dbc7&rfr_iscdi=true |