Concentration independent modulation of local micromechanics in a fibrin gel
Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be mod...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-05, Vol.6 (5), p.e20201-e20201 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e20201 |
---|---|
container_issue | 5 |
container_start_page | e20201 |
container_title | PloS one |
container_volume | 6 |
creator | Kotlarchyk, Maxwell A Shreim, Samir G Alvarez-Elizondo, Martha B Estrada, Laura C Singh, Rahul Valdevit, Lorenzo Kniazeva, Ekaterina Gratton, Enrico Putnam, Andrew J Botvinick, Elliot L |
description | Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues. |
doi_str_mv | 10.1371/journal.pone.0020201 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298561193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476891095</galeid><doaj_id>oai_doaj_org_article_13b6b9b8ea2446d08651baaa97fe7670</doaj_id><sourcerecordid>A476891095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPmYpM2NsAx-DAws-HUbTpPTmSxpM9u0ov_e1OkuU9kLCSSHk-e8SU7eLHtOyZLygr67DkPXgl8eQotLQlga9EF2ThVnC8kIf3gSn2VPYrwmRPBSysfZGaOSqULx82y7Dq3Btu-gd6HNXWvxgGlq-7wJdvDHdKhzHwz4vHGmCw2aPbTOxITnkNeu6lKwQ_80e1SDj_hsWi-y7x8_fFt_XmyvPm3Wl9uFkYr2C4uqYIglsVYyBpwUdQFIqRJIkAPYurKIlSiBMMGVKRiUouTGikqwVQH8Int51D34EPXUiKgpU6WQSYcnYnMkbIBrfehcA91vHcDpv4nQ7TR0vTMeNeWVrFRVIrDVSlpSSkErAFBFjYUsSNJ6P502VA3aY7f8THS-07q93oWfmlNCuBgF3kwCXbgZMPa6cdGg99BiGKIupSoJlXIkX_1D3v-4idpBur9r65CONaOmvlwVslSUKJGo5T1UGhbTLybT1C7lZwVvZwWJ6fFXv4MhRr35-uX_2asfc_b1CbtH8P0-Bj-MzopzcHUEk8di7LC-6zElevT8bTf06Hk9eT6VvTj9n7uiW5PzP3_s_E8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298561193</pqid></control><display><type>article</type><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L</creator><contributor>Egles, Christophe</contributor><creatorcontrib>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L ; Egles, Christophe</creatorcontrib><description>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0020201</identifier><identifier>PMID: 21629793</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angiogenesis ; Animals ; Aorta ; Biology ; Biomedical engineering ; Cattle ; Cell culture ; Confocal microscopy ; Crosslinking ; Engineering ; Extracellular matrix ; Fibrin ; Fibrin - chemistry ; Fluorescence ; Hydrogels ; Hydrogels - chemistry ; Laboratories ; Lasers ; Ligands ; Mechanical properties ; Micromechanics ; Microscopy ; Microscopy, Confocal ; Modulation ; Morphology ; Motility ; Optics ; Particle tracking ; Physiology ; Pore size ; Porosity ; Proteins ; Residual stress ; Rheology ; Smooth muscle ; Spectrum analysis ; Stiffening ; Stiffness ; Substrates ; Tissue engineering ; Viscoelasticity</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e20201-e20201</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kotlarchyk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kotlarchyk et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</citedby><cites>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21629793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Egles, Christophe</contributor><creatorcontrib>Kotlarchyk, Maxwell A</creatorcontrib><creatorcontrib>Shreim, Samir G</creatorcontrib><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Estrada, Laura C</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><creatorcontrib>Kniazeva, Ekaterina</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><creatorcontrib>Putnam, Andrew J</creatorcontrib><creatorcontrib>Botvinick, Elliot L</creatorcontrib><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Cattle</subject><subject>Cell culture</subject><subject>Confocal microscopy</subject><subject>Crosslinking</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>Fluorescence</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Ligands</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Modulation</subject><subject>Morphology</subject><subject>Motility</subject><subject>Optics</subject><subject>Particle tracking</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Residual stress</subject><subject>Rheology</subject><subject>Smooth muscle</subject><subject>Spectrum analysis</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Substrates</subject><subject>Tissue engineering</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPmYpM2NsAx-DAws-HUbTpPTmSxpM9u0ov_e1OkuU9kLCSSHk-e8SU7eLHtOyZLygr67DkPXgl8eQotLQlga9EF2ThVnC8kIf3gSn2VPYrwmRPBSysfZGaOSqULx82y7Dq3Btu-gd6HNXWvxgGlq-7wJdvDHdKhzHwz4vHGmCw2aPbTOxITnkNeu6lKwQ_80e1SDj_hsWi-y7x8_fFt_XmyvPm3Wl9uFkYr2C4uqYIglsVYyBpwUdQFIqRJIkAPYurKIlSiBMMGVKRiUouTGikqwVQH8Int51D34EPXUiKgpU6WQSYcnYnMkbIBrfehcA91vHcDpv4nQ7TR0vTMeNeWVrFRVIrDVSlpSSkErAFBFjYUsSNJ6P502VA3aY7f8THS-07q93oWfmlNCuBgF3kwCXbgZMPa6cdGg99BiGKIupSoJlXIkX_1D3v-4idpBur9r65CONaOmvlwVslSUKJGo5T1UGhbTLybT1C7lZwVvZwWJ6fFXv4MhRr35-uX_2asfc_b1CbtH8P0-Bj-MzopzcHUEk8di7LC-6zElevT8bTf06Hk9eT6VvTj9n7uiW5PzP3_s_E8</recordid><startdate>20110523</startdate><enddate>20110523</enddate><creator>Kotlarchyk, Maxwell A</creator><creator>Shreim, Samir G</creator><creator>Alvarez-Elizondo, Martha B</creator><creator>Estrada, Laura C</creator><creator>Singh, Rahul</creator><creator>Valdevit, Lorenzo</creator><creator>Kniazeva, Ekaterina</creator><creator>Gratton, Enrico</creator><creator>Putnam, Andrew J</creator><creator>Botvinick, Elliot L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110523</creationdate><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><author>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Cattle</topic><topic>Cell culture</topic><topic>Confocal microscopy</topic><topic>Crosslinking</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>Fluorescence</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Ligands</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Modulation</topic><topic>Morphology</topic><topic>Motility</topic><topic>Optics</topic><topic>Particle tracking</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Residual stress</topic><topic>Rheology</topic><topic>Smooth muscle</topic><topic>Spectrum analysis</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Substrates</topic><topic>Tissue engineering</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarchyk, Maxwell A</creatorcontrib><creatorcontrib>Shreim, Samir G</creatorcontrib><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Estrada, Laura C</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><creatorcontrib>Kniazeva, Ekaterina</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><creatorcontrib>Putnam, Andrew J</creatorcontrib><creatorcontrib>Botvinick, Elliot L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarchyk, Maxwell A</au><au>Shreim, Samir G</au><au>Alvarez-Elizondo, Martha B</au><au>Estrada, Laura C</au><au>Singh, Rahul</au><au>Valdevit, Lorenzo</au><au>Kniazeva, Ekaterina</au><au>Gratton, Enrico</au><au>Putnam, Andrew J</au><au>Botvinick, Elliot L</au><au>Egles, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration independent modulation of local micromechanics in a fibrin gel</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-23</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e20201</spage><epage>e20201</epage><pages>e20201-e20201</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21629793</pmid><doi>10.1371/journal.pone.0020201</doi><tpages>e20201</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-05, Vol.6 (5), p.e20201-e20201 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1298561193 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Animals Aorta Biology Biomedical engineering Cattle Cell culture Confocal microscopy Crosslinking Engineering Extracellular matrix Fibrin Fibrin - chemistry Fluorescence Hydrogels Hydrogels - chemistry Laboratories Lasers Ligands Mechanical properties Micromechanics Microscopy Microscopy, Confocal Modulation Morphology Motility Optics Particle tracking Physiology Pore size Porosity Proteins Residual stress Rheology Smooth muscle Spectrum analysis Stiffening Stiffness Substrates Tissue engineering Viscoelasticity |
title | Concentration independent modulation of local micromechanics in a fibrin gel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration%20independent%20modulation%20of%20local%20micromechanics%20in%20a%20fibrin%20gel&rft.jtitle=PloS%20one&rft.au=Kotlarchyk,%20Maxwell%20A&rft.date=2011-05-23&rft.volume=6&rft.issue=5&rft.spage=e20201&rft.epage=e20201&rft.pages=e20201-e20201&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0020201&rft_dat=%3Cgale_plos_%3EA476891095%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298561193&rft_id=info:pmid/21629793&rft_galeid=A476891095&rft_doaj_id=oai_doaj_org_article_13b6b9b8ea2446d08651baaa97fe7670&rfr_iscdi=true |