Concentration independent modulation of local micromechanics in a fibrin gel

Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-05, Vol.6 (5), p.e20201-e20201
Hauptverfasser: Kotlarchyk, Maxwell A, Shreim, Samir G, Alvarez-Elizondo, Martha B, Estrada, Laura C, Singh, Rahul, Valdevit, Lorenzo, Kniazeva, Ekaterina, Gratton, Enrico, Putnam, Andrew J, Botvinick, Elliot L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e20201
container_issue 5
container_start_page e20201
container_title PloS one
container_volume 6
creator Kotlarchyk, Maxwell A
Shreim, Samir G
Alvarez-Elizondo, Martha B
Estrada, Laura C
Singh, Rahul
Valdevit, Lorenzo
Kniazeva, Ekaterina
Gratton, Enrico
Putnam, Andrew J
Botvinick, Elliot L
description Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.
doi_str_mv 10.1371/journal.pone.0020201
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298561193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476891095</galeid><doaj_id>oai_doaj_org_article_13b6b9b8ea2446d08651baaa97fe7670</doaj_id><sourcerecordid>A476891095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPmYpM2NsAx-DAws-HUbTpPTmSxpM9u0ov_e1OkuU9kLCSSHk-e8SU7eLHtOyZLygr67DkPXgl8eQotLQlga9EF2ThVnC8kIf3gSn2VPYrwmRPBSysfZGaOSqULx82y7Dq3Btu-gd6HNXWvxgGlq-7wJdvDHdKhzHwz4vHGmCw2aPbTOxITnkNeu6lKwQ_80e1SDj_hsWi-y7x8_fFt_XmyvPm3Wl9uFkYr2C4uqYIglsVYyBpwUdQFIqRJIkAPYurKIlSiBMMGVKRiUouTGikqwVQH8Int51D34EPXUiKgpU6WQSYcnYnMkbIBrfehcA91vHcDpv4nQ7TR0vTMeNeWVrFRVIrDVSlpSSkErAFBFjYUsSNJ6P502VA3aY7f8THS-07q93oWfmlNCuBgF3kwCXbgZMPa6cdGg99BiGKIupSoJlXIkX_1D3v-4idpBur9r65CONaOmvlwVslSUKJGo5T1UGhbTLybT1C7lZwVvZwWJ6fFXv4MhRr35-uX_2asfc_b1CbtH8P0-Bj-MzopzcHUEk8di7LC-6zElevT8bTf06Hk9eT6VvTj9n7uiW5PzP3_s_E8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298561193</pqid></control><display><type>article</type><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L</creator><contributor>Egles, Christophe</contributor><creatorcontrib>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L ; Egles, Christophe</creatorcontrib><description>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0020201</identifier><identifier>PMID: 21629793</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angiogenesis ; Animals ; Aorta ; Biology ; Biomedical engineering ; Cattle ; Cell culture ; Confocal microscopy ; Crosslinking ; Engineering ; Extracellular matrix ; Fibrin ; Fibrin - chemistry ; Fluorescence ; Hydrogels ; Hydrogels - chemistry ; Laboratories ; Lasers ; Ligands ; Mechanical properties ; Micromechanics ; Microscopy ; Microscopy, Confocal ; Modulation ; Morphology ; Motility ; Optics ; Particle tracking ; Physiology ; Pore size ; Porosity ; Proteins ; Residual stress ; Rheology ; Smooth muscle ; Spectrum analysis ; Stiffening ; Stiffness ; Substrates ; Tissue engineering ; Viscoelasticity</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e20201-e20201</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Kotlarchyk et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kotlarchyk et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</citedby><cites>FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100350/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100350/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21629793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Egles, Christophe</contributor><creatorcontrib>Kotlarchyk, Maxwell A</creatorcontrib><creatorcontrib>Shreim, Samir G</creatorcontrib><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Estrada, Laura C</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><creatorcontrib>Kniazeva, Ekaterina</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><creatorcontrib>Putnam, Andrew J</creatorcontrib><creatorcontrib>Botvinick, Elliot L</creatorcontrib><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Aorta</subject><subject>Biology</subject><subject>Biomedical engineering</subject><subject>Cattle</subject><subject>Cell culture</subject><subject>Confocal microscopy</subject><subject>Crosslinking</subject><subject>Engineering</subject><subject>Extracellular matrix</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>Fluorescence</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Ligands</subject><subject>Mechanical properties</subject><subject>Micromechanics</subject><subject>Microscopy</subject><subject>Microscopy, Confocal</subject><subject>Modulation</subject><subject>Morphology</subject><subject>Motility</subject><subject>Optics</subject><subject>Particle tracking</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Residual stress</subject><subject>Rheology</subject><subject>Smooth muscle</subject><subject>Spectrum analysis</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Substrates</subject><subject>Tissue engineering</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguLFjPmYpM2NsAx-DAws-HUbTpPTmSxpM9u0ov_e1OkuU9kLCSSHk-e8SU7eLHtOyZLygr67DkPXgl8eQotLQlga9EF2ThVnC8kIf3gSn2VPYrwmRPBSysfZGaOSqULx82y7Dq3Btu-gd6HNXWvxgGlq-7wJdvDHdKhzHwz4vHGmCw2aPbTOxITnkNeu6lKwQ_80e1SDj_hsWi-y7x8_fFt_XmyvPm3Wl9uFkYr2C4uqYIglsVYyBpwUdQFIqRJIkAPYurKIlSiBMMGVKRiUouTGikqwVQH8Int51D34EPXUiKgpU6WQSYcnYnMkbIBrfehcA91vHcDpv4nQ7TR0vTMeNeWVrFRVIrDVSlpSSkErAFBFjYUsSNJ6P502VA3aY7f8THS-07q93oWfmlNCuBgF3kwCXbgZMPa6cdGg99BiGKIupSoJlXIkX_1D3v-4idpBur9r65CONaOmvlwVslSUKJGo5T1UGhbTLybT1C7lZwVvZwWJ6fFXv4MhRr35-uX_2asfc_b1CbtH8P0-Bj-MzopzcHUEk8di7LC-6zElevT8bTf06Hk9eT6VvTj9n7uiW5PzP3_s_E8</recordid><startdate>20110523</startdate><enddate>20110523</enddate><creator>Kotlarchyk, Maxwell A</creator><creator>Shreim, Samir G</creator><creator>Alvarez-Elizondo, Martha B</creator><creator>Estrada, Laura C</creator><creator>Singh, Rahul</creator><creator>Valdevit, Lorenzo</creator><creator>Kniazeva, Ekaterina</creator><creator>Gratton, Enrico</creator><creator>Putnam, Andrew J</creator><creator>Botvinick, Elliot L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110523</creationdate><title>Concentration independent modulation of local micromechanics in a fibrin gel</title><author>Kotlarchyk, Maxwell A ; Shreim, Samir G ; Alvarez-Elizondo, Martha B ; Estrada, Laura C ; Singh, Rahul ; Valdevit, Lorenzo ; Kniazeva, Ekaterina ; Gratton, Enrico ; Putnam, Andrew J ; Botvinick, Elliot L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-de972ee80dd622a307f7ae1195e0e3aadfbdeeb58a02539c72a8583cd5b5247a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Aorta</topic><topic>Biology</topic><topic>Biomedical engineering</topic><topic>Cattle</topic><topic>Cell culture</topic><topic>Confocal microscopy</topic><topic>Crosslinking</topic><topic>Engineering</topic><topic>Extracellular matrix</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>Fluorescence</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Ligands</topic><topic>Mechanical properties</topic><topic>Micromechanics</topic><topic>Microscopy</topic><topic>Microscopy, Confocal</topic><topic>Modulation</topic><topic>Morphology</topic><topic>Motility</topic><topic>Optics</topic><topic>Particle tracking</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Residual stress</topic><topic>Rheology</topic><topic>Smooth muscle</topic><topic>Spectrum analysis</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Substrates</topic><topic>Tissue engineering</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarchyk, Maxwell A</creatorcontrib><creatorcontrib>Shreim, Samir G</creatorcontrib><creatorcontrib>Alvarez-Elizondo, Martha B</creatorcontrib><creatorcontrib>Estrada, Laura C</creatorcontrib><creatorcontrib>Singh, Rahul</creatorcontrib><creatorcontrib>Valdevit, Lorenzo</creatorcontrib><creatorcontrib>Kniazeva, Ekaterina</creatorcontrib><creatorcontrib>Gratton, Enrico</creatorcontrib><creatorcontrib>Putnam, Andrew J</creatorcontrib><creatorcontrib>Botvinick, Elliot L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarchyk, Maxwell A</au><au>Shreim, Samir G</au><au>Alvarez-Elizondo, Martha B</au><au>Estrada, Laura C</au><au>Singh, Rahul</au><au>Valdevit, Lorenzo</au><au>Kniazeva, Ekaterina</au><au>Gratton, Enrico</au><au>Putnam, Andrew J</au><au>Botvinick, Elliot L</au><au>Egles, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concentration independent modulation of local micromechanics in a fibrin gel</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-23</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e20201</spage><epage>e20201</epage><pages>e20201-e20201</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21629793</pmid><doi>10.1371/journal.pone.0020201</doi><tpages>e20201</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-05, Vol.6 (5), p.e20201-e20201
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1298561193
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Angiogenesis
Animals
Aorta
Biology
Biomedical engineering
Cattle
Cell culture
Confocal microscopy
Crosslinking
Engineering
Extracellular matrix
Fibrin
Fibrin - chemistry
Fluorescence
Hydrogels
Hydrogels - chemistry
Laboratories
Lasers
Ligands
Mechanical properties
Micromechanics
Microscopy
Microscopy, Confocal
Modulation
Morphology
Motility
Optics
Particle tracking
Physiology
Pore size
Porosity
Proteins
Residual stress
Rheology
Smooth muscle
Spectrum analysis
Stiffening
Stiffness
Substrates
Tissue engineering
Viscoelasticity
title Concentration independent modulation of local micromechanics in a fibrin gel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concentration%20independent%20modulation%20of%20local%20micromechanics%20in%20a%20fibrin%20gel&rft.jtitle=PloS%20one&rft.au=Kotlarchyk,%20Maxwell%20A&rft.date=2011-05-23&rft.volume=6&rft.issue=5&rft.spage=e20201&rft.epage=e20201&rft.pages=e20201-e20201&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0020201&rft_dat=%3Cgale_plos_%3EA476891095%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298561193&rft_id=info:pmid/21629793&rft_galeid=A476891095&rft_doaj_id=oai_doaj_org_article_13b6b9b8ea2446d08651baaa97fe7670&rfr_iscdi=true