Modeling a new water channel that allows SET9 to dimethylate p53

SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-05, Vol.6 (5), p.e19856-e19856
Hauptverfasser: Bai, Qifeng, Shen, Yulin, Yao, Xiaojun, Wang, Fang, Du, Yuping, Wang, Qin, Jin, Nengzhi, Hai, Jun, Hu, Tiejun, Yang, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e19856
container_issue 5
container_start_page e19856
container_title PloS one
container_volume 6
creator Bai, Qifeng
Shen, Yulin
Yao, Xiaojun
Wang, Fang
Du, Yuping
Wang, Qin
Jin, Nengzhi
Hai, Jun
Hu, Tiejun
Yang, Jinbo
description SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur.
doi_str_mv 10.1371/journal.pone.0019856
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298322184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476891204</galeid><doaj_id>oai_doaj_org_article_41031eef543b47d1b0fbab36ede7399d</doaj_id><sourcerecordid>A476891204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-53f4db5af0e59ab25ed0b13b9840b94c72e8bdc95ec8972794c754df6a8c50253</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQgJx2MUfcWJfEFVVYKWiSrRwtRx78rHyxtvYYem_x2HTaoN6wD7YGj_zjsd-k-QlRktMC_xh7Ya-U3a5dR0sEcKCs_xRcowFJYucIPr4YH-UPPN-jRCjPM-fJkcE54TFcZx8-uYM2LarU5V2sEt3KkCf6kZ1Hdg0NCqkylq38-nV-bVIg0tNu4HQ3NoIpltGnydPKmU9vJjWk-TH5_Prs6-Li8svq7PTi4XOBQ4LRqvMlExVCJhQJWFgUIlpKXiGSpHpggAvjRYMNBcFKcYQy0yVK64ZIoyeJK_3ulvrvJya9xITwSkhmGeRWO0J49Rabvt2o_pb6VQr_wZcX0vVh1ZbkBlGFANULKNlVhhcoqpUJc3BQEGFMFHr41RtKDdgNHShV3YmOj_p2kbW7pekSHDCRBR4Nwn07mYAH-Sm9RqsVR24wUueC1ZgzMfG3vxDPtzcRNUq3r_tKhfL6lFTnmZFzgUmaKSWD1BxGti0OhqlamN8lvB-lhCZAL9DrQbv5erq-_-zlz_n7NsDtgFlQ-OdHULrOj8Hsz2oe-d9D9X9G2MkR5_fvYYcfS4nn8e0V4f_c590Z2z6B1Ws9jI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298322184</pqid></control><display><type>article</type><title>Modeling a new water channel that allows SET9 to dimethylate p53</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bai, Qifeng ; Shen, Yulin ; Yao, Xiaojun ; Wang, Fang ; Du, Yuping ; Wang, Qin ; Jin, Nengzhi ; Hai, Jun ; Hu, Tiejun ; Yang, Jinbo</creator><contributor>Fraternali, Franca</contributor><creatorcontrib>Bai, Qifeng ; Shen, Yulin ; Yao, Xiaojun ; Wang, Fang ; Du, Yuping ; Wang, Qin ; Jin, Nengzhi ; Hai, Jun ; Hu, Tiejun ; Yang, Jinbo ; Fraternali, Franca</creatorcontrib><description>SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0019856</identifier><identifier>PMID: 21625555</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Catalysis ; Cell cycle ; Chemistry ; Computer simulation ; Crystal structure ; Crystallography, X-Ray ; Gene expression ; Groundwater flow ; Histone H3 ; Histone-Lysine N-Methyltransferase - metabolism ; Homocysteine ; Humans ; Hydrogen bonds ; L-Homocysteine ; Life sciences ; Lysine ; Lysine - metabolism ; Methionine ; Methylation ; Methyltransferase ; Models, Molecular ; Molecular docking ; Molecular dynamics ; Molecular Dynamics Simulation ; p53 Protein ; Peptides ; Physics ; Protein Binding ; Protein Conformation ; S-Adenosylhomocysteine - metabolism ; S-Adenosylmethionine - metabolism ; Stem cells ; Substrate Specificity ; Transferases ; Tumor proteins ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Water - metabolism</subject><ispartof>PloS one, 2011-05, Vol.6 (5), p.e19856-e19856</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Bai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Bai et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-53f4db5af0e59ab25ed0b13b9840b94c72e8bdc95ec8972794c754df6a8c50253</citedby><cites>FETCH-LOGICAL-c691t-53f4db5af0e59ab25ed0b13b9840b94c72e8bdc95ec8972794c754df6a8c50253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098259/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098259/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21625555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fraternali, Franca</contributor><creatorcontrib>Bai, Qifeng</creatorcontrib><creatorcontrib>Shen, Yulin</creatorcontrib><creatorcontrib>Yao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Du, Yuping</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Jin, Nengzhi</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Hu, Tiejun</creatorcontrib><creatorcontrib>Yang, Jinbo</creatorcontrib><title>Modeling a new water channel that allows SET9 to dimethylate p53</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur.</description><subject>Biology</subject><subject>Catalysis</subject><subject>Cell cycle</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Gene expression</subject><subject>Groundwater flow</subject><subject>Histone H3</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Homocysteine</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>L-Homocysteine</subject><subject>Life sciences</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>Methionine</subject><subject>Methylation</subject><subject>Methyltransferase</subject><subject>Models, Molecular</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>p53 Protein</subject><subject>Peptides</subject><subject>Physics</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>S-Adenosylhomocysteine - metabolism</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>Stem cells</subject><subject>Substrate Specificity</subject><subject>Transferases</subject><subject>Tumor proteins</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Water - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQgJx2MUfcWJfEFVVYKWiSrRwtRx78rHyxtvYYem_x2HTaoN6wD7YGj_zjsd-k-QlRktMC_xh7Ya-U3a5dR0sEcKCs_xRcowFJYucIPr4YH-UPPN-jRCjPM-fJkcE54TFcZx8-uYM2LarU5V2sEt3KkCf6kZ1Hdg0NCqkylq38-nV-bVIg0tNu4HQ3NoIpltGnydPKmU9vJjWk-TH5_Prs6-Li8svq7PTi4XOBQ4LRqvMlExVCJhQJWFgUIlpKXiGSpHpggAvjRYMNBcFKcYQy0yVK64ZIoyeJK_3ulvrvJya9xITwSkhmGeRWO0J49Rabvt2o_pb6VQr_wZcX0vVh1ZbkBlGFANULKNlVhhcoqpUJc3BQEGFMFHr41RtKDdgNHShV3YmOj_p2kbW7pekSHDCRBR4Nwn07mYAH-Sm9RqsVR24wUueC1ZgzMfG3vxDPtzcRNUq3r_tKhfL6lFTnmZFzgUmaKSWD1BxGti0OhqlamN8lvB-lhCZAL9DrQbv5erq-_-zlz_n7NsDtgFlQ-OdHULrOj8Hsz2oe-d9D9X9G2MkR5_fvYYcfS4nn8e0V4f_c590Z2z6B1Ws9jI</recordid><startdate>20110519</startdate><enddate>20110519</enddate><creator>Bai, Qifeng</creator><creator>Shen, Yulin</creator><creator>Yao, Xiaojun</creator><creator>Wang, Fang</creator><creator>Du, Yuping</creator><creator>Wang, Qin</creator><creator>Jin, Nengzhi</creator><creator>Hai, Jun</creator><creator>Hu, Tiejun</creator><creator>Yang, Jinbo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110519</creationdate><title>Modeling a new water channel that allows SET9 to dimethylate p53</title><author>Bai, Qifeng ; Shen, Yulin ; Yao, Xiaojun ; Wang, Fang ; Du, Yuping ; Wang, Qin ; Jin, Nengzhi ; Hai, Jun ; Hu, Tiejun ; Yang, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-53f4db5af0e59ab25ed0b13b9840b94c72e8bdc95ec8972794c754df6a8c50253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Catalysis</topic><topic>Cell cycle</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Gene expression</topic><topic>Groundwater flow</topic><topic>Histone H3</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Homocysteine</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>L-Homocysteine</topic><topic>Life sciences</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>Methionine</topic><topic>Methylation</topic><topic>Methyltransferase</topic><topic>Models, Molecular</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>p53 Protein</topic><topic>Peptides</topic><topic>Physics</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>S-Adenosylhomocysteine - metabolism</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>Stem cells</topic><topic>Substrate Specificity</topic><topic>Transferases</topic><topic>Tumor proteins</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Qifeng</creatorcontrib><creatorcontrib>Shen, Yulin</creatorcontrib><creatorcontrib>Yao, Xiaojun</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Du, Yuping</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Jin, Nengzhi</creatorcontrib><creatorcontrib>Hai, Jun</creatorcontrib><creatorcontrib>Hu, Tiejun</creatorcontrib><creatorcontrib>Yang, Jinbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Qifeng</au><au>Shen, Yulin</au><au>Yao, Xiaojun</au><au>Wang, Fang</au><au>Du, Yuping</au><au>Wang, Qin</au><au>Jin, Nengzhi</au><au>Hai, Jun</au><au>Hu, Tiejun</au><au>Yang, Jinbo</au><au>Fraternali, Franca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling a new water channel that allows SET9 to dimethylate p53</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-05-19</date><risdate>2011</risdate><volume>6</volume><issue>5</issue><spage>e19856</spage><epage>e19856</epage><pages>e19856-e19856</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21625555</pmid><doi>10.1371/journal.pone.0019856</doi><tpages>e19856</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-05, Vol.6 (5), p.e19856-e19856
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1298322184
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology
Catalysis
Cell cycle
Chemistry
Computer simulation
Crystal structure
Crystallography, X-Ray
Gene expression
Groundwater flow
Histone H3
Histone-Lysine N-Methyltransferase - metabolism
Homocysteine
Humans
Hydrogen bonds
L-Homocysteine
Life sciences
Lysine
Lysine - metabolism
Methionine
Methylation
Methyltransferase
Models, Molecular
Molecular docking
Molecular dynamics
Molecular Dynamics Simulation
p53 Protein
Peptides
Physics
Protein Binding
Protein Conformation
S-Adenosylhomocysteine - metabolism
S-Adenosylmethionine - metabolism
Stem cells
Substrate Specificity
Transferases
Tumor proteins
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Water - metabolism
title Modeling a new water channel that allows SET9 to dimethylate p53
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20a%20new%20water%20channel%20that%20allows%20SET9%20to%20dimethylate%20p53&rft.jtitle=PloS%20one&rft.au=Bai,%20Qifeng&rft.date=2011-05-19&rft.volume=6&rft.issue=5&rft.spage=e19856&rft.epage=e19856&rft.pages=e19856-e19856&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0019856&rft_dat=%3Cgale_plos_%3EA476891204%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298322184&rft_id=info:pmid/21625555&rft_galeid=A476891204&rft_doaj_id=oai_doaj_org_article_41031eef543b47d1b0fbab36ede7399d&rfr_iscdi=true