Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton

Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2011-12, Vol.9 (12), p.e1001213
Hauptverfasser: Pilhofer, Martin, Ladinsky, Mark S, McDowall, Alasdair W, Petroni, Giulio, Jensen, Grant J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e1001213
container_title PLoS biology
container_volume 9
creator Pilhofer, Martin
Ladinsky, Mark S
McDowall, Alasdair W
Petroni, Giulio
Jensen, Grant J
description Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.
doi_str_mv 10.1371/journal.pbio.1001213
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1298129274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A276353264</galeid><doaj_id>oai_doaj_org_article_f141329f0fcb416fa651af25ac7a8509</doaj_id><sourcerecordid>A276353264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-d0a87b0c50a0fe7df0383b82f11c34242cc92b1e9095ea17b3a3ee569f36c3783</originalsourceid><addsrcrecordid>eNqVkttrFDEYxQdRbK3-B6IBn3zYNZe5xYfCUrwsVAveXsM3mS-72WYm6yRT7H9vtjstXVBQhjBh8jtnPk5Olj1ndM5Exd5s_Dj04Obbxvo5o5RxJh5kx6zIi1lV18XDe_uj7EkIG0o5l7x-nB1xzkouc3mcuU9WDz6OzegwENuTBnTEwcJbsui1xT6Sm0PbB9KM1rUEiLFXONsmlTfWQbdj1r7zzq-INySukeB4CcO1j1YTfR19uESH0fdPs0cGXMBn0_sk-_7-3bezj7Pziw_Ls8X5TFcljbOWQl01VBcUqMGqNVTUoqm5YUyLnOdca8kbhpLKAoFVjQCBWJTSiFKLqhYn2cu979b5oKaggmJc1mnxKk_Eck-0HjZqO9guzas8WHXzwQ8rBUMa36EyLGeCS0ONbnJWGigLBoYXoCuoCyqT1-n0t7HpsNUpjwHcgenhSW_XauWvlOCCM8mTwavJYPA_RwzxLyNP1ArSVLY3PpnpzgatFrwqRSF4uaPmf6DS02Jnte8xXRkeCl4fCBIT8VdcwRiCWn798h_s539nL34csvmeTVUMYUBzFx6jalf220DUruxqKnuSvbgf_J3ott3iN8EG-z4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298129274</pqid></control><display><type>article</type><title>Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pilhofer, Martin ; Ladinsky, Mark S ; McDowall, Alasdair W ; Petroni, Giulio ; Jensen, Grant J</creator><creatorcontrib>Pilhofer, Martin ; Ladinsky, Mark S ; McDowall, Alasdair W ; Petroni, Giulio ; Jensen, Grant J</creatorcontrib><description>Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001213</identifier><identifier>PMID: 22162949</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biology ; Cancer ; Cell division ; Cryoelectron Microscopy ; Cytoskeletal Proteins - metabolism ; Cytoskeleton - metabolism ; Cytoskeleton - ultrastructure ; Gene Expression ; Genetic aspects ; Microbiology ; Microscopy ; Microtubules ; Motility ; Phylogenetics ; Phylogeny ; Physics ; Physiological aspects ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; RNA, Messenger - metabolism ; Trees ; Tubulin - chemistry ; Tubulin - genetics ; Tubulin - metabolism ; Tubulins ; Verrucomicrobia - metabolism ; Verrucomicrobia - ultrastructure</subject><ispartof>PLoS biology, 2011-12, Vol.9 (12), p.e1001213</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Pilhofer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ (2011) Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton. PLoS Biol 9(12): e1001213. doi:10.1371/journal.pbio.1001213</rights><rights>Pilhofer et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-d0a87b0c50a0fe7df0383b82f11c34242cc92b1e9095ea17b3a3ee569f36c3783</citedby><cites>FETCH-LOGICAL-c760t-d0a87b0c50a0fe7df0383b82f11c34242cc92b1e9095ea17b3a3ee569f36c3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22162949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Ladinsky, Mark S</creatorcontrib><creatorcontrib>McDowall, Alasdair W</creatorcontrib><creatorcontrib>Petroni, Giulio</creatorcontrib><creatorcontrib>Jensen, Grant J</creatorcontrib><title>Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.</description><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Cryoelectron Microscopy</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - ultrastructure</subject><subject>Gene Expression</subject><subject>Genetic aspects</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Microtubules</subject><subject>Motility</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Messenger - metabolism</subject><subject>Trees</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><subject>Tubulins</subject><subject>Verrucomicrobia - metabolism</subject><subject>Verrucomicrobia - ultrastructure</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkttrFDEYxQdRbK3-B6IBn3zYNZe5xYfCUrwsVAveXsM3mS-72WYm6yRT7H9vtjstXVBQhjBh8jtnPk5Olj1ndM5Exd5s_Dj04Obbxvo5o5RxJh5kx6zIi1lV18XDe_uj7EkIG0o5l7x-nB1xzkouc3mcuU9WDz6OzegwENuTBnTEwcJbsui1xT6Sm0PbB9KM1rUEiLFXONsmlTfWQbdj1r7zzq-INySukeB4CcO1j1YTfR19uESH0fdPs0cGXMBn0_sk-_7-3bezj7Pziw_Ls8X5TFcljbOWQl01VBcUqMGqNVTUoqm5YUyLnOdca8kbhpLKAoFVjQCBWJTSiFKLqhYn2cu979b5oKaggmJc1mnxKk_Eck-0HjZqO9guzas8WHXzwQ8rBUMa36EyLGeCS0ONbnJWGigLBoYXoCuoCyqT1-n0t7HpsNUpjwHcgenhSW_XauWvlOCCM8mTwavJYPA_RwzxLyNP1ArSVLY3PpnpzgatFrwqRSF4uaPmf6DS02Jnte8xXRkeCl4fCBIT8VdcwRiCWn798h_s539nL34csvmeTVUMYUBzFx6jalf220DUruxqKnuSvbgf_J3ott3iN8EG-z4</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Pilhofer, Martin</creator><creator>Ladinsky, Mark S</creator><creator>McDowall, Alasdair W</creator><creator>Petroni, Giulio</creator><creator>Jensen, Grant J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20111201</creationdate><title>Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton</title><author>Pilhofer, Martin ; Ladinsky, Mark S ; McDowall, Alasdair W ; Petroni, Giulio ; Jensen, Grant J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-d0a87b0c50a0fe7df0383b82f11c34242cc92b1e9095ea17b3a3ee569f36c3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Cryoelectron Microscopy</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - ultrastructure</topic><topic>Gene Expression</topic><topic>Genetic aspects</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Microtubules</topic><topic>Motility</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Messenger - metabolism</topic><topic>Trees</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><topic>Tubulins</topic><topic>Verrucomicrobia - metabolism</topic><topic>Verrucomicrobia - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilhofer, Martin</creatorcontrib><creatorcontrib>Ladinsky, Mark S</creatorcontrib><creatorcontrib>McDowall, Alasdair W</creatorcontrib><creatorcontrib>Petroni, Giulio</creatorcontrib><creatorcontrib>Jensen, Grant J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilhofer, Martin</au><au>Ladinsky, Mark S</au><au>McDowall, Alasdair W</au><au>Petroni, Giulio</au><au>Jensen, Grant J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>9</volume><issue>12</issue><spage>e1001213</spage><pages>e1001213-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as "bacterial microtubules" (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22162949</pmid><doi>10.1371/journal.pbio.1001213</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2011-12, Vol.9 (12), p.e1001213
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1298129274
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biology
Cancer
Cell division
Cryoelectron Microscopy
Cytoskeletal Proteins - metabolism
Cytoskeleton - metabolism
Cytoskeleton - ultrastructure
Gene Expression
Genetic aspects
Microbiology
Microscopy
Microtubules
Motility
Phylogenetics
Phylogeny
Physics
Physiological aspects
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
RNA, Messenger - metabolism
Trees
Tubulin - chemistry
Tubulin - genetics
Tubulin - metabolism
Tubulins
Verrucomicrobia - metabolism
Verrucomicrobia - ultrastructure
title Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubules%20in%20bacteria:%20Ancient%20tubulins%20build%20a%20five-protofilament%20homolog%20of%20the%20eukaryotic%20cytoskeleton&rft.jtitle=PLoS%20biology&rft.au=Pilhofer,%20Martin&rft.date=2011-12-01&rft.volume=9&rft.issue=12&rft.spage=e1001213&rft.pages=e1001213-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001213&rft_dat=%3Cgale_plos_%3EA276353264%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298129274&rft_id=info:pmid/22162949&rft_galeid=A276353264&rft_doaj_id=oai_doaj_org_article_f141329f0fcb416fa651af25ac7a8509&rfr_iscdi=true