Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions
Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2011-03, Vol.9 (3), p.e1001025-e1001025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1001025 |
---|---|
container_issue | 3 |
container_start_page | e1001025 |
container_title | PLoS biology |
container_volume | 9 |
creator | Cheng, Kwong Tai Liu, Xibao Ong, Hwei Ling Swaim, William Ambudkar, Indu S |
description | Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE. |
doi_str_mv | 10.1371/journal.pbio.1001025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1298015369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_64322283275949cf89a087ca6b28f5c3</doaj_id><sourcerecordid>1022560354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</originalsourceid><addsrcrecordid>eNp9Ut1qFDEYHUSxtfoGogEvFGTX_E6SG0EWfwoLFdn7kMkka5bMZJvMFPY9fJI-Qp_MjDstrYhXCfnOOTk5OVX1EsElIhx92MUx9Tos942PSwQhgpg9qk4Ro2zBhWCP7-1Pqmc57yDEWGLxtDrBiEKBZH1a_VpHowNY6Zvr98D2QzqAK6_BRdIegWS3Y9CDzWAfdO406GzXJN3bMjFp9ENXGCA6sPnxfYWA7ltgYtGIIQNzGGKOwZtZO_ttcZsL83L0ybbAxQTy3hrvCsbYEIAbezP42Ofn1RNXsPbFvJ5Vmy-fN6tvi_XF1_PVp_XCUCGGRQ0JwZxITXFr2qZlCAnCLGHOOCZ4rRvNHa4lI0RSzLkx3FBoa4JgSzElZ9Xro-w-xKzmPLNCWAqIGKllQZwfEW3UO7VPvtPpoKL26s9BTFul0-BNsKqmBGMsiiEmqTROSA0FN7pusHDMkKL1cb5tbDrbmilsHR6IPpz0_qfaxitFIIM1EUXg7SyQ4uVo86A6n6fgyofEMSvBOBUM88n2u_8iS1UwK-mxKYM3f0H_nQM9okyKOSfr7mwjqKY23rLU1EY1t7HQXt1_8h3ptn7kN2os3tA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298015369</pqid></control><display><type>article</type><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S</creator><contributor>Aldrich, Richard A.</contributor><creatorcontrib>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S ; Aldrich, Richard A.</creatorcontrib><description>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001025</identifier><identifier>PMID: 21408196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Calcium ; Calcium (extracellular) ; Calcium (reticular) ; Calcium - chemistry ; Calcium channels ; Calcium Channels - analysis ; Calcium Channels - genetics ; Calcium Channels - physiology ; Calcium influx ; Calcium Signaling - physiology ; Calcium signalling ; Cell Line ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cells ; Channel gating ; Channel pores ; Cytosol - chemistry ; Cytosol - metabolism ; Endoplasmic reticulum ; Gene Knockdown Techniques ; Humans ; Ion channels ; Ion currents ; Membrane Proteins - analysis ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Mice ; Mice, Inbred BALB C ; Models, Biological ; Neoplasm Proteins - analysis ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; NF-AT protein ; ORAI1 Protein ; Patch-Clamp Techniques ; Plasma ; Plasma membranes ; Potassium channels (calcium-gated) ; Proteins ; Recruitment ; Signal transduction ; STIM1 protein ; Stromal Interaction Molecule 1 ; thapsigargin ; transient receptor potential proteins ; TRPC Cation Channels - analysis ; TRPC Cation Channels - genetics ; TRPC Cation Channels - metabolism</subject><ispartof>PLoS biology, 2011-03, Vol.9 (3), p.e1001025-e1001025</ispartof><rights>2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions. PLoS Biol 9(3): e1001025. doi:10.1371/journal.pbio.1001025</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2011</rights><rights>2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions. PLoS Biol 9(3): e1001025. doi:10.1371/journal.pbio.1001025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</citedby><cites>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050638/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050638/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21408196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aldrich, Richard A.</contributor><creatorcontrib>Cheng, Kwong Tai</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Swaim, William</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</description><subject>Animals</subject><subject>Biology</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - chemistry</subject><subject>Calcium channels</subject><subject>Calcium Channels - analysis</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - physiology</subject><subject>Calcium influx</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Cell Line</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Channel gating</subject><subject>Channel pores</subject><subject>Cytosol - chemistry</subject><subject>Cytosol - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ion currents</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Models, Biological</subject><subject>Neoplasm Proteins - analysis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>NF-AT protein</subject><subject>ORAI1 Protein</subject><subject>Patch-Clamp Techniques</subject><subject>Plasma</subject><subject>Plasma membranes</subject><subject>Potassium channels (calcium-gated)</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Signal transduction</subject><subject>STIM1 protein</subject><subject>Stromal Interaction Molecule 1</subject><subject>thapsigargin</subject><subject>transient receptor potential proteins</subject><subject>TRPC Cation Channels - analysis</subject><subject>TRPC Cation Channels - genetics</subject><subject>TRPC Cation Channels - metabolism</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ut1qFDEYHUSxtfoGogEvFGTX_E6SG0EWfwoLFdn7kMkka5bMZJvMFPY9fJI-Qp_MjDstrYhXCfnOOTk5OVX1EsElIhx92MUx9Tos942PSwQhgpg9qk4Ro2zBhWCP7-1Pqmc57yDEWGLxtDrBiEKBZH1a_VpHowNY6Zvr98D2QzqAK6_BRdIegWS3Y9CDzWAfdO406GzXJN3bMjFp9ENXGCA6sPnxfYWA7ltgYtGIIQNzGGKOwZtZO_ttcZsL83L0ybbAxQTy3hrvCsbYEIAbezP42Ofn1RNXsPbFvJ5Vmy-fN6tvi_XF1_PVp_XCUCGGRQ0JwZxITXFr2qZlCAnCLGHOOCZ4rRvNHa4lI0RSzLkx3FBoa4JgSzElZ9Xro-w-xKzmPLNCWAqIGKllQZwfEW3UO7VPvtPpoKL26s9BTFul0-BNsKqmBGMsiiEmqTROSA0FN7pusHDMkKL1cb5tbDrbmilsHR6IPpz0_qfaxitFIIM1EUXg7SyQ4uVo86A6n6fgyofEMSvBOBUM88n2u_8iS1UwK-mxKYM3f0H_nQM9okyKOSfr7mwjqKY23rLU1EY1t7HQXt1_8h3ptn7kN2os3tA</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Cheng, Kwong Tai</creator><creator>Liu, Xibao</creator><creator>Ong, Hwei Ling</creator><creator>Swaim, William</creator><creator>Ambudkar, Indu S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20110301</creationdate><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><author>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - chemistry</topic><topic>Calcium channels</topic><topic>Calcium Channels - analysis</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - physiology</topic><topic>Calcium influx</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Cell Line</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Channel gating</topic><topic>Channel pores</topic><topic>Cytosol - chemistry</topic><topic>Cytosol - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ion currents</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Models, Biological</topic><topic>Neoplasm Proteins - analysis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>NF-AT protein</topic><topic>ORAI1 Protein</topic><topic>Patch-Clamp Techniques</topic><topic>Plasma</topic><topic>Plasma membranes</topic><topic>Potassium channels (calcium-gated)</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Signal transduction</topic><topic>STIM1 protein</topic><topic>Stromal Interaction Molecule 1</topic><topic>thapsigargin</topic><topic>transient receptor potential proteins</topic><topic>TRPC Cation Channels - analysis</topic><topic>TRPC Cation Channels - genetics</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kwong Tai</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Swaim, William</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kwong Tai</au><au>Liu, Xibao</au><au>Ong, Hwei Ling</au><au>Swaim, William</au><au>Ambudkar, Indu S</au><au>Aldrich, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>9</volume><issue>3</issue><spage>e1001025</spage><epage>e1001025</epage><pages>e1001025-e1001025</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21408196</pmid><doi>10.1371/journal.pbio.1001025</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2011-03, Vol.9 (3), p.e1001025-e1001025 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1298015369 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biology Calcium Calcium (extracellular) Calcium (reticular) Calcium - chemistry Calcium channels Calcium Channels - analysis Calcium Channels - genetics Calcium Channels - physiology Calcium influx Calcium Signaling - physiology Calcium signalling Cell Line Cell Membrane - chemistry Cell Membrane - metabolism Cells Channel gating Channel pores Cytosol - chemistry Cytosol - metabolism Endoplasmic reticulum Gene Knockdown Techniques Humans Ion channels Ion currents Membrane Proteins - analysis Membrane Proteins - genetics Membrane Proteins - physiology Mice Mice, Inbred BALB C Models, Biological Neoplasm Proteins - analysis Neoplasm Proteins - genetics Neoplasm Proteins - physiology NF-AT protein ORAI1 Protein Patch-Clamp Techniques Plasma Plasma membranes Potassium channels (calcium-gated) Proteins Recruitment Signal transduction STIM1 protein Stromal Interaction Molecule 1 thapsigargin transient receptor potential proteins TRPC Cation Channels - analysis TRPC Cation Channels - genetics TRPC Cation Channels - metabolism |
title | Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Ca%C2%B2+%20entry%20via%20Orai1%20regulates%20plasma%20membrane%20recruitment%20of%20TRPC1%20and%20controls%20cytosolic%20Ca%C2%B2+%20signals%20required%20for%20specific%20cell%20functions&rft.jtitle=PLoS%20biology&rft.au=Cheng,%20Kwong%20Tai&rft.date=2011-03-01&rft.volume=9&rft.issue=3&rft.spage=e1001025&rft.epage=e1001025&rft.pages=e1001025-e1001025&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001025&rft_dat=%3Cproquest_plos_%3E1022560354%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298015369&rft_id=info:pmid/21408196&rft_doaj_id=oai_doaj_org_article_64322283275949cf89a087ca6b28f5c3&rfr_iscdi=true |