Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions

Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2011-03, Vol.9 (3), p.e1001025-e1001025
Hauptverfasser: Cheng, Kwong Tai, Liu, Xibao, Ong, Hwei Ling, Swaim, William, Ambudkar, Indu S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1001025
container_issue 3
container_start_page e1001025
container_title PLoS biology
container_volume 9
creator Cheng, Kwong Tai
Liu, Xibao
Ong, Hwei Ling
Swaim, William
Ambudkar, Indu S
description Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.
doi_str_mv 10.1371/journal.pbio.1001025
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1298015369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_64322283275949cf89a087ca6b28f5c3</doaj_id><sourcerecordid>1022560354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</originalsourceid><addsrcrecordid>eNp9Ut1qFDEYHUSxtfoGogEvFGTX_E6SG0EWfwoLFdn7kMkka5bMZJvMFPY9fJI-Qp_MjDstrYhXCfnOOTk5OVX1EsElIhx92MUx9Tos942PSwQhgpg9qk4Ro2zBhWCP7-1Pqmc57yDEWGLxtDrBiEKBZH1a_VpHowNY6Zvr98D2QzqAK6_BRdIegWS3Y9CDzWAfdO406GzXJN3bMjFp9ENXGCA6sPnxfYWA7ltgYtGIIQNzGGKOwZtZO_ttcZsL83L0ybbAxQTy3hrvCsbYEIAbezP42Ofn1RNXsPbFvJ5Vmy-fN6tvi_XF1_PVp_XCUCGGRQ0JwZxITXFr2qZlCAnCLGHOOCZ4rRvNHa4lI0RSzLkx3FBoa4JgSzElZ9Xro-w-xKzmPLNCWAqIGKllQZwfEW3UO7VPvtPpoKL26s9BTFul0-BNsKqmBGMsiiEmqTROSA0FN7pusHDMkKL1cb5tbDrbmilsHR6IPpz0_qfaxitFIIM1EUXg7SyQ4uVo86A6n6fgyofEMSvBOBUM88n2u_8iS1UwK-mxKYM3f0H_nQM9okyKOSfr7mwjqKY23rLU1EY1t7HQXt1_8h3ptn7kN2os3tA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298015369</pqid></control><display><type>article</type><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S</creator><contributor>Aldrich, Richard A.</contributor><creatorcontrib>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S ; Aldrich, Richard A.</creatorcontrib><description>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1001025</identifier><identifier>PMID: 21408196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biology ; Calcium ; Calcium (extracellular) ; Calcium (reticular) ; Calcium - chemistry ; Calcium channels ; Calcium Channels - analysis ; Calcium Channels - genetics ; Calcium Channels - physiology ; Calcium influx ; Calcium Signaling - physiology ; Calcium signalling ; Cell Line ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cells ; Channel gating ; Channel pores ; Cytosol - chemistry ; Cytosol - metabolism ; Endoplasmic reticulum ; Gene Knockdown Techniques ; Humans ; Ion channels ; Ion currents ; Membrane Proteins - analysis ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Mice ; Mice, Inbred BALB C ; Models, Biological ; Neoplasm Proteins - analysis ; Neoplasm Proteins - genetics ; Neoplasm Proteins - physiology ; NF-AT protein ; ORAI1 Protein ; Patch-Clamp Techniques ; Plasma ; Plasma membranes ; Potassium channels (calcium-gated) ; Proteins ; Recruitment ; Signal transduction ; STIM1 protein ; Stromal Interaction Molecule 1 ; thapsigargin ; transient receptor potential proteins ; TRPC Cation Channels - analysis ; TRPC Cation Channels - genetics ; TRPC Cation Channels - metabolism</subject><ispartof>PLoS biology, 2011-03, Vol.9 (3), p.e1001025-e1001025</ispartof><rights>2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions. PLoS Biol 9(3): e1001025. doi:10.1371/journal.pbio.1001025</rights><rights>This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2011</rights><rights>2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions. PLoS Biol 9(3): e1001025. doi:10.1371/journal.pbio.1001025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</citedby><cites>FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050638/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050638/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21408196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aldrich, Richard A.</contributor><creatorcontrib>Cheng, Kwong Tai</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Swaim, William</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</description><subject>Animals</subject><subject>Biology</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - chemistry</subject><subject>Calcium channels</subject><subject>Calcium Channels - analysis</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - physiology</subject><subject>Calcium influx</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Cell Line</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cells</subject><subject>Channel gating</subject><subject>Channel pores</subject><subject>Cytosol - chemistry</subject><subject>Cytosol - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ion currents</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Models, Biological</subject><subject>Neoplasm Proteins - analysis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - physiology</subject><subject>NF-AT protein</subject><subject>ORAI1 Protein</subject><subject>Patch-Clamp Techniques</subject><subject>Plasma</subject><subject>Plasma membranes</subject><subject>Potassium channels (calcium-gated)</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Signal transduction</subject><subject>STIM1 protein</subject><subject>Stromal Interaction Molecule 1</subject><subject>thapsigargin</subject><subject>transient receptor potential proteins</subject><subject>TRPC Cation Channels - analysis</subject><subject>TRPC Cation Channels - genetics</subject><subject>TRPC Cation Channels - metabolism</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ut1qFDEYHUSxtfoGogEvFGTX_E6SG0EWfwoLFdn7kMkka5bMZJvMFPY9fJI-Qp_MjDstrYhXCfnOOTk5OVX1EsElIhx92MUx9Tos942PSwQhgpg9qk4Ro2zBhWCP7-1Pqmc57yDEWGLxtDrBiEKBZH1a_VpHowNY6Zvr98D2QzqAK6_BRdIegWS3Y9CDzWAfdO406GzXJN3bMjFp9ENXGCA6sPnxfYWA7ltgYtGIIQNzGGKOwZtZO_ttcZsL83L0ybbAxQTy3hrvCsbYEIAbezP42Ofn1RNXsPbFvJ5Vmy-fN6tvi_XF1_PVp_XCUCGGRQ0JwZxITXFr2qZlCAnCLGHOOCZ4rRvNHa4lI0RSzLkx3FBoa4JgSzElZ9Xro-w-xKzmPLNCWAqIGKllQZwfEW3UO7VPvtPpoKL26s9BTFul0-BNsKqmBGMsiiEmqTROSA0FN7pusHDMkKL1cb5tbDrbmilsHR6IPpz0_qfaxitFIIM1EUXg7SyQ4uVo86A6n6fgyofEMSvBOBUM88n2u_8iS1UwK-mxKYM3f0H_nQM9okyKOSfr7mwjqKY23rLU1EY1t7HQXt1_8h3ptn7kN2os3tA</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Cheng, Kwong Tai</creator><creator>Liu, Xibao</creator><creator>Ong, Hwei Ling</creator><creator>Swaim, William</creator><creator>Ambudkar, Indu S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20110301</creationdate><title>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</title><author>Cheng, Kwong Tai ; Liu, Xibao ; Ong, Hwei Ling ; Swaim, William ; Ambudkar, Indu S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-60332739a42dcdbd511835e35fcf5876aba7f26953394277cc7c40e6310d4243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - chemistry</topic><topic>Calcium channels</topic><topic>Calcium Channels - analysis</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - physiology</topic><topic>Calcium influx</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Cell Line</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cells</topic><topic>Channel gating</topic><topic>Channel pores</topic><topic>Cytosol - chemistry</topic><topic>Cytosol - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ion currents</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Models, Biological</topic><topic>Neoplasm Proteins - analysis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - physiology</topic><topic>NF-AT protein</topic><topic>ORAI1 Protein</topic><topic>Patch-Clamp Techniques</topic><topic>Plasma</topic><topic>Plasma membranes</topic><topic>Potassium channels (calcium-gated)</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Signal transduction</topic><topic>STIM1 protein</topic><topic>Stromal Interaction Molecule 1</topic><topic>thapsigargin</topic><topic>transient receptor potential proteins</topic><topic>TRPC Cation Channels - analysis</topic><topic>TRPC Cation Channels - genetics</topic><topic>TRPC Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Kwong Tai</creatorcontrib><creatorcontrib>Liu, Xibao</creatorcontrib><creatorcontrib>Ong, Hwei Ling</creatorcontrib><creatorcontrib>Swaim, William</creatorcontrib><creatorcontrib>Ambudkar, Indu S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Kwong Tai</au><au>Liu, Xibao</au><au>Ong, Hwei Ling</au><au>Swaim, William</au><au>Ambudkar, Indu S</au><au>Aldrich, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>9</volume><issue>3</issue><spage>e1001025</spage><epage>e1001025</epage><pages>e1001025-e1001025</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21408196</pmid><doi>10.1371/journal.pbio.1001025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2011-03, Vol.9 (3), p.e1001025-e1001025
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1298015369
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Biology
Calcium
Calcium (extracellular)
Calcium (reticular)
Calcium - chemistry
Calcium channels
Calcium Channels - analysis
Calcium Channels - genetics
Calcium Channels - physiology
Calcium influx
Calcium Signaling - physiology
Calcium signalling
Cell Line
Cell Membrane - chemistry
Cell Membrane - metabolism
Cells
Channel gating
Channel pores
Cytosol - chemistry
Cytosol - metabolism
Endoplasmic reticulum
Gene Knockdown Techniques
Humans
Ion channels
Ion currents
Membrane Proteins - analysis
Membrane Proteins - genetics
Membrane Proteins - physiology
Mice
Mice, Inbred BALB C
Models, Biological
Neoplasm Proteins - analysis
Neoplasm Proteins - genetics
Neoplasm Proteins - physiology
NF-AT protein
ORAI1 Protein
Patch-Clamp Techniques
Plasma
Plasma membranes
Potassium channels (calcium-gated)
Proteins
Recruitment
Signal transduction
STIM1 protein
Stromal Interaction Molecule 1
thapsigargin
transient receptor potential proteins
TRPC Cation Channels - analysis
TRPC Cation Channels - genetics
TRPC Cation Channels - metabolism
title Local Ca²+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca²+ signals required for specific cell functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Ca%C2%B2+%20entry%20via%20Orai1%20regulates%20plasma%20membrane%20recruitment%20of%20TRPC1%20and%20controls%20cytosolic%20Ca%C2%B2+%20signals%20required%20for%20specific%20cell%20functions&rft.jtitle=PLoS%20biology&rft.au=Cheng,%20Kwong%20Tai&rft.date=2011-03-01&rft.volume=9&rft.issue=3&rft.spage=e1001025&rft.epage=e1001025&rft.pages=e1001025-e1001025&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1001025&rft_dat=%3Cproquest_plos_%3E1022560354%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298015369&rft_id=info:pmid/21408196&rft_doaj_id=oai_doaj_org_article_64322283275949cf89a087ca6b28f5c3&rfr_iscdi=true