Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX
For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes....
Gespeichert in:
Veröffentlicht in: | PLoS biology 2009-06, Vol.7 (6), p.e1000147 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | e1000147 |
container_title | PLoS biology |
container_volume | 7 |
creator | Mitri, Christian Soustelle, Laurent Framery, Bérénice Bockaert, Joël Parmentier, Marie-Laure Grau, Yves |
description | For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin. |
doi_str_mv | 10.1371/journal.pbio.1000147 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1297521778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638106066</galeid><doaj_id>oai_doaj_org_article_2b15ffe78a3740a39bcadcf0e3326dca</doaj_id><sourcerecordid>A638106066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYoaBf4AgEiskWvxIbGeDVHVgplJFR8ND7KzrR1pXiR3FaQX_HpcGmCIWIC9sXX_n2L4-WfYUoymmHL_ehl3voZl2yoUpRgjhgt_LznFZlBMuRHn_zvosexTjFiFCKiIeZme4Klkhquo8W9004Ifc-Wj14LQzNl9ONHjYg3fe5r3tbBPzyz7E0G1cA_neQT5s7CjJQ99twOdXN_Pb_LL98jh7UEMT7ZNxvsg-vXv7cX49Wa6uFvNZ8uZMDJPSGECMAlVC1EjhojaUaGaxEmBUhRVmxPIq1UpT1nXNqFGKFCWUYAqDDL3Inh99uyZEOfYiSkwqXhLMuUjE4kiYAFvZ9a6F_psM4OSPQujXEvr05MZKonA6xHIBlBcIaKU0GF0jSylhRkPyejOetlOtNdr6oYfmxPR0x7uNXIe9JKwqBeLJ4NXRYPOH7Hq2lIdO9q1EiCPOCrrHCX9xxNeQrud8HZKrbl3UcsaowIghxhI1_QuVhrGt08Hb2qX6ieDliSAxg_06rGEXo1x8uP0P9v2_s6vPp2xxZHWKVOxt_asdGMlDsH9-pjwEW47BTrJnd3_gt2hMMv0O3dfz4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves</creator><contributor>Bellen, Hugo J.</contributor><creatorcontrib>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves ; Bellen, Hugo J.</creatorcontrib><description>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000147</identifier><identifier>PMID: 19564899</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Avoidance Learning ; Avoidance Learning - drug effects ; Behavior ; Biochemistry, Molecular Biology ; Canavanine ; Canavanine - metabolism ; Canavanine - pharmacology ; Cell Biology/Neuronal Signaling Mechanisms ; Cell Line ; Cell receptors ; Chemoreceptor Cells ; Chemoreceptor Cells - cytology ; Chemoreceptor Cells - drug effects ; Chemoreceptor Cells - metabolism ; Control ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila melanogaster - physiology ; Drosophila Proteins ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; Feeding Behavior ; Feeding Behavior - drug effects ; Food ; G proteins ; Gene Expression ; Gene Expression - drug effects ; Gene Expression Profiling ; Genetic aspects ; Genetics and Genomics/Gene Function ; Humans ; Immunohistochemistry ; In Situ Hybridization ; Insecticides ; Insecticides - metabolism ; Insecticides - pharmacology ; Insects ; Life Sciences ; Ligands ; Mutation ; Neuroscience/Behavioral Neuroscience ; Neuroscience/Sensory Systems ; Pharmacology ; Plants ; Plants - metabolism ; Proteins ; Receptors, Cell Surface ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, Cell Surface - physiology ; Receptors, G-Protein-Coupled ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Receptors, G-Protein-Coupled - physiology ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; Seeds ; Sucrose ; Toxins</subject><ispartof>PLoS biology, 2009-06, Vol.7 (6), p.e1000147</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Mitri et al. 2009</rights><rights>2009 Mitri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mitri C, Soustelle L, Framery B, Bockaert J, Parmentier M-L, et al. (2009) Plant Insecticide L-Canavanine Repels Drosophila via the Insect Orphan GPCR DmX. PLoS Biol 7(6): e1000147. doi:10.1371/journal.pbio.1000147</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</citedby><cites>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</cites><orcidid>0000-0001-6133-3413 ; 0000-0001-8226-9529 ; 0000-0003-3882-2029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00707643$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bellen, Hugo J.</contributor><creatorcontrib>Mitri, Christian</creatorcontrib><creatorcontrib>Soustelle, Laurent</creatorcontrib><creatorcontrib>Framery, Bérénice</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Parmentier, Marie-Laure</creatorcontrib><creatorcontrib>Grau, Yves</creatorcontrib><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</description><subject>Analysis</subject><subject>Animals</subject><subject>Avoidance Learning</subject><subject>Avoidance Learning - drug effects</subject><subject>Behavior</subject><subject>Biochemistry, Molecular Biology</subject><subject>Canavanine</subject><subject>Canavanine - metabolism</subject><subject>Canavanine - pharmacology</subject><subject>Cell Biology/Neuronal Signaling Mechanisms</subject><subject>Cell Line</subject><subject>Cell receptors</subject><subject>Chemoreceptor Cells</subject><subject>Chemoreceptor Cells - cytology</subject><subject>Chemoreceptor Cells - drug effects</subject><subject>Chemoreceptor Cells - metabolism</subject><subject>Control</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>Feeding Behavior</subject><subject>Feeding Behavior - drug effects</subject><subject>Food</subject><subject>G proteins</subject><subject>Gene Expression</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics/Gene Function</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Insecticides</subject><subject>Insecticides - metabolism</subject><subject>Insecticides - pharmacology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Mutation</subject><subject>Neuroscience/Behavioral Neuroscience</subject><subject>Neuroscience/Sensory Systems</subject><subject>Pharmacology</subject><subject>Plants</subject><subject>Plants - metabolism</subject><subject>Proteins</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Cell Surface - physiology</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Seeds</subject><subject>Sucrose</subject><subject>Toxins</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYoaBf4AgEiskWvxIbGeDVHVgplJFR8ND7KzrR1pXiR3FaQX_HpcGmCIWIC9sXX_n2L4-WfYUoymmHL_ehl3voZl2yoUpRgjhgt_LznFZlBMuRHn_zvosexTjFiFCKiIeZme4Klkhquo8W9004Ifc-Wj14LQzNl9ONHjYg3fe5r3tbBPzyz7E0G1cA_neQT5s7CjJQ99twOdXN_Pb_LL98jh7UEMT7ZNxvsg-vXv7cX49Wa6uFvNZ8uZMDJPSGECMAlVC1EjhojaUaGaxEmBUhRVmxPIq1UpT1nXNqFGKFCWUYAqDDL3Inh99uyZEOfYiSkwqXhLMuUjE4kiYAFvZ9a6F_psM4OSPQujXEvr05MZKonA6xHIBlBcIaKU0GF0jSylhRkPyejOetlOtNdr6oYfmxPR0x7uNXIe9JKwqBeLJ4NXRYPOH7Hq2lIdO9q1EiCPOCrrHCX9xxNeQrud8HZKrbl3UcsaowIghxhI1_QuVhrGt08Hb2qX6ieDliSAxg_06rGEXo1x8uP0P9v2_s6vPp2xxZHWKVOxt_asdGMlDsH9-pjwEW47BTrJnd3_gt2hMMv0O3dfz4w</recordid><startdate>20090630</startdate><enddate>20090630</enddate><creator>Mitri, Christian</creator><creator>Soustelle, Laurent</creator><creator>Framery, Bérénice</creator><creator>Bockaert, Joël</creator><creator>Parmentier, Marie-Laure</creator><creator>Grau, Yves</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-6133-3413</orcidid><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0003-3882-2029</orcidid></search><sort><creationdate>20090630</creationdate><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><author>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Avoidance Learning</topic><topic>Avoidance Learning - drug effects</topic><topic>Behavior</topic><topic>Biochemistry, Molecular Biology</topic><topic>Canavanine</topic><topic>Canavanine - metabolism</topic><topic>Canavanine - pharmacology</topic><topic>Cell Biology/Neuronal Signaling Mechanisms</topic><topic>Cell Line</topic><topic>Cell receptors</topic><topic>Chemoreceptor Cells</topic><topic>Chemoreceptor Cells - cytology</topic><topic>Chemoreceptor Cells - drug effects</topic><topic>Chemoreceptor Cells - metabolism</topic><topic>Control</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>Feeding Behavior</topic><topic>Feeding Behavior - drug effects</topic><topic>Food</topic><topic>G proteins</topic><topic>Gene Expression</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics/Gene Function</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Insecticides</topic><topic>Insecticides - metabolism</topic><topic>Insecticides - pharmacology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Mutation</topic><topic>Neuroscience/Behavioral Neuroscience</topic><topic>Neuroscience/Sensory Systems</topic><topic>Pharmacology</topic><topic>Plants</topic><topic>Plants - metabolism</topic><topic>Proteins</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Cell Surface - physiology</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Seeds</topic><topic>Sucrose</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitri, Christian</creatorcontrib><creatorcontrib>Soustelle, Laurent</creatorcontrib><creatorcontrib>Framery, Bérénice</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Parmentier, Marie-Laure</creatorcontrib><creatorcontrib>Grau, Yves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitri, Christian</au><au>Soustelle, Laurent</au><au>Framery, Bérénice</au><au>Bockaert, Joël</au><au>Parmentier, Marie-Laure</au><au>Grau, Yves</au><au>Bellen, Hugo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2009-06-30</date><risdate>2009</risdate><volume>7</volume><issue>6</issue><spage>e1000147</spage><pages>e1000147-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19564899</pmid><doi>10.1371/journal.pbio.1000147</doi><orcidid>https://orcid.org/0000-0001-6133-3413</orcidid><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0003-3882-2029</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2009-06, Vol.7 (6), p.e1000147 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1297521778 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Animals Avoidance Learning Avoidance Learning - drug effects Behavior Biochemistry, Molecular Biology Canavanine Canavanine - metabolism Canavanine - pharmacology Cell Biology/Neuronal Signaling Mechanisms Cell Line Cell receptors Chemoreceptor Cells Chemoreceptor Cells - cytology Chemoreceptor Cells - drug effects Chemoreceptor Cells - metabolism Control Drosophila Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila melanogaster - physiology Drosophila Proteins Drosophila Proteins - genetics Drosophila Proteins - metabolism Drosophila Proteins - physiology Feeding Behavior Feeding Behavior - drug effects Food G proteins Gene Expression Gene Expression - drug effects Gene Expression Profiling Genetic aspects Genetics and Genomics/Gene Function Humans Immunohistochemistry In Situ Hybridization Insecticides Insecticides - metabolism Insecticides - pharmacology Insects Life Sciences Ligands Mutation Neuroscience/Behavioral Neuroscience Neuroscience/Sensory Systems Pharmacology Plants Plants - metabolism Proteins Receptors, Cell Surface Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Receptors, Cell Surface - physiology Receptors, G-Protein-Coupled Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Receptors, G-Protein-Coupled - physiology Reverse Transcriptase Polymerase Chain Reaction RNA Interference Seeds Sucrose Toxins |
title | Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20insecticide%20L-canavanine%20repels%20Drosophila%20via%20the%20insect%20orphan%20GPCR%20DmX&rft.jtitle=PLoS%20biology&rft.au=Mitri,%20Christian&rft.date=2009-06-30&rft.volume=7&rft.issue=6&rft.spage=e1000147&rft.pages=e1000147-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000147&rft_dat=%3Cgale_plos_%3EA638106066%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19564899&rft_galeid=A638106066&rft_doaj_id=oai_doaj_org_article_2b15ffe78a3740a39bcadcf0e3326dca&rfr_iscdi=true |