Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX

For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2009-06, Vol.7 (6), p.e1000147
Hauptverfasser: Mitri, Christian, Soustelle, Laurent, Framery, Bérénice, Bockaert, Joël, Parmentier, Marie-Laure, Grau, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e1000147
container_title PLoS biology
container_volume 7
creator Mitri, Christian
Soustelle, Laurent
Framery, Bérénice
Bockaert, Joël
Parmentier, Marie-Laure
Grau, Yves
description For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.
doi_str_mv 10.1371/journal.pbio.1000147
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1297521778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638106066</galeid><doaj_id>oai_doaj_org_article_2b15ffe78a3740a39bcadcf0e3326dca</doaj_id><sourcerecordid>A638106066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYoaBf4AgEiskWvxIbGeDVHVgplJFR8ND7KzrR1pXiR3FaQX_HpcGmCIWIC9sXX_n2L4-WfYUoymmHL_ehl3voZl2yoUpRgjhgt_LznFZlBMuRHn_zvosexTjFiFCKiIeZme4Klkhquo8W9004Ifc-Wj14LQzNl9ONHjYg3fe5r3tbBPzyz7E0G1cA_neQT5s7CjJQ99twOdXN_Pb_LL98jh7UEMT7ZNxvsg-vXv7cX49Wa6uFvNZ8uZMDJPSGECMAlVC1EjhojaUaGaxEmBUhRVmxPIq1UpT1nXNqFGKFCWUYAqDDL3Inh99uyZEOfYiSkwqXhLMuUjE4kiYAFvZ9a6F_psM4OSPQujXEvr05MZKonA6xHIBlBcIaKU0GF0jSylhRkPyejOetlOtNdr6oYfmxPR0x7uNXIe9JKwqBeLJ4NXRYPOH7Hq2lIdO9q1EiCPOCrrHCX9xxNeQrud8HZKrbl3UcsaowIghxhI1_QuVhrGt08Hb2qX6ieDliSAxg_06rGEXo1x8uP0P9v2_s6vPp2xxZHWKVOxt_asdGMlDsH9-pjwEW47BTrJnd3_gt2hMMv0O3dfz4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves</creator><contributor>Bellen, Hugo J.</contributor><creatorcontrib>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves ; Bellen, Hugo J.</creatorcontrib><description>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000147</identifier><identifier>PMID: 19564899</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Avoidance Learning ; Avoidance Learning - drug effects ; Behavior ; Biochemistry, Molecular Biology ; Canavanine ; Canavanine - metabolism ; Canavanine - pharmacology ; Cell Biology/Neuronal Signaling Mechanisms ; Cell Line ; Cell receptors ; Chemoreceptor Cells ; Chemoreceptor Cells - cytology ; Chemoreceptor Cells - drug effects ; Chemoreceptor Cells - metabolism ; Control ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila melanogaster - physiology ; Drosophila Proteins ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Drosophila Proteins - physiology ; Feeding Behavior ; Feeding Behavior - drug effects ; Food ; G proteins ; Gene Expression ; Gene Expression - drug effects ; Gene Expression Profiling ; Genetic aspects ; Genetics and Genomics/Gene Function ; Humans ; Immunohistochemistry ; In Situ Hybridization ; Insecticides ; Insecticides - metabolism ; Insecticides - pharmacology ; Insects ; Life Sciences ; Ligands ; Mutation ; Neuroscience/Behavioral Neuroscience ; Neuroscience/Sensory Systems ; Pharmacology ; Plants ; Plants - metabolism ; Proteins ; Receptors, Cell Surface ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, Cell Surface - physiology ; Receptors, G-Protein-Coupled ; Receptors, G-Protein-Coupled - genetics ; Receptors, G-Protein-Coupled - metabolism ; Receptors, G-Protein-Coupled - physiology ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; Seeds ; Sucrose ; Toxins</subject><ispartof>PLoS biology, 2009-06, Vol.7 (6), p.e1000147</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Mitri et al. 2009</rights><rights>2009 Mitri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mitri C, Soustelle L, Framery B, Bockaert J, Parmentier M-L, et al. (2009) Plant Insecticide L-Canavanine Repels Drosophila via the Insect Orphan GPCR DmX. PLoS Biol 7(6): e1000147. doi:10.1371/journal.pbio.1000147</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</citedby><cites>FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</cites><orcidid>0000-0001-6133-3413 ; 0000-0001-8226-9529 ; 0000-0003-3882-2029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695807/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695807/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19564899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00707643$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Bellen, Hugo J.</contributor><creatorcontrib>Mitri, Christian</creatorcontrib><creatorcontrib>Soustelle, Laurent</creatorcontrib><creatorcontrib>Framery, Bérénice</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Parmentier, Marie-Laure</creatorcontrib><creatorcontrib>Grau, Yves</creatorcontrib><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</description><subject>Analysis</subject><subject>Animals</subject><subject>Avoidance Learning</subject><subject>Avoidance Learning - drug effects</subject><subject>Behavior</subject><subject>Biochemistry, Molecular Biology</subject><subject>Canavanine</subject><subject>Canavanine - metabolism</subject><subject>Canavanine - pharmacology</subject><subject>Cell Biology/Neuronal Signaling Mechanisms</subject><subject>Cell Line</subject><subject>Cell receptors</subject><subject>Chemoreceptor Cells</subject><subject>Chemoreceptor Cells - cytology</subject><subject>Chemoreceptor Cells - drug effects</subject><subject>Chemoreceptor Cells - metabolism</subject><subject>Control</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Drosophila Proteins - physiology</subject><subject>Feeding Behavior</subject><subject>Feeding Behavior - drug effects</subject><subject>Food</subject><subject>G proteins</subject><subject>Gene Expression</subject><subject>Gene Expression - drug effects</subject><subject>Gene Expression Profiling</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics/Gene Function</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>In Situ Hybridization</subject><subject>Insecticides</subject><subject>Insecticides - metabolism</subject><subject>Insecticides - pharmacology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Mutation</subject><subject>Neuroscience/Behavioral Neuroscience</subject><subject>Neuroscience/Sensory Systems</subject><subject>Pharmacology</subject><subject>Plants</subject><subject>Plants - metabolism</subject><subject>Proteins</subject><subject>Receptors, Cell Surface</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, Cell Surface - physiology</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Receptors, G-Protein-Coupled - genetics</subject><subject>Receptors, G-Protein-Coupled - metabolism</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Seeds</subject><subject>Sucrose</subject><subject>Toxins</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYoaBf4AgEiskWvxIbGeDVHVgplJFR8ND7KzrR1pXiR3FaQX_HpcGmCIWIC9sXX_n2L4-WfYUoymmHL_ehl3voZl2yoUpRgjhgt_LznFZlBMuRHn_zvosexTjFiFCKiIeZme4Klkhquo8W9004Ifc-Wj14LQzNl9ONHjYg3fe5r3tbBPzyz7E0G1cA_neQT5s7CjJQ99twOdXN_Pb_LL98jh7UEMT7ZNxvsg-vXv7cX49Wa6uFvNZ8uZMDJPSGECMAlVC1EjhojaUaGaxEmBUhRVmxPIq1UpT1nXNqFGKFCWUYAqDDL3Inh99uyZEOfYiSkwqXhLMuUjE4kiYAFvZ9a6F_psM4OSPQujXEvr05MZKonA6xHIBlBcIaKU0GF0jSylhRkPyejOetlOtNdr6oYfmxPR0x7uNXIe9JKwqBeLJ4NXRYPOH7Hq2lIdO9q1EiCPOCrrHCX9xxNeQrud8HZKrbl3UcsaowIghxhI1_QuVhrGt08Hb2qX6ieDliSAxg_06rGEXo1x8uP0P9v2_s6vPp2xxZHWKVOxt_asdGMlDsH9-pjwEW47BTrJnd3_gt2hMMv0O3dfz4w</recordid><startdate>20090630</startdate><enddate>20090630</enddate><creator>Mitri, Christian</creator><creator>Soustelle, Laurent</creator><creator>Framery, Bérénice</creator><creator>Bockaert, Joël</creator><creator>Parmentier, Marie-Laure</creator><creator>Grau, Yves</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-6133-3413</orcidid><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0003-3882-2029</orcidid></search><sort><creationdate>20090630</creationdate><title>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</title><author>Mitri, Christian ; Soustelle, Laurent ; Framery, Bérénice ; Bockaert, Joël ; Parmentier, Marie-Laure ; Grau, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768t-5dda063a3b88f0b14fd32c6e1b8adb91b162e7932c5d5fff63dbb245a5ad4d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Avoidance Learning</topic><topic>Avoidance Learning - drug effects</topic><topic>Behavior</topic><topic>Biochemistry, Molecular Biology</topic><topic>Canavanine</topic><topic>Canavanine - metabolism</topic><topic>Canavanine - pharmacology</topic><topic>Cell Biology/Neuronal Signaling Mechanisms</topic><topic>Cell Line</topic><topic>Cell receptors</topic><topic>Chemoreceptor Cells</topic><topic>Chemoreceptor Cells - cytology</topic><topic>Chemoreceptor Cells - drug effects</topic><topic>Chemoreceptor Cells - metabolism</topic><topic>Control</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Drosophila Proteins - physiology</topic><topic>Feeding Behavior</topic><topic>Feeding Behavior - drug effects</topic><topic>Food</topic><topic>G proteins</topic><topic>Gene Expression</topic><topic>Gene Expression - drug effects</topic><topic>Gene Expression Profiling</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics/Gene Function</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>In Situ Hybridization</topic><topic>Insecticides</topic><topic>Insecticides - metabolism</topic><topic>Insecticides - pharmacology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Mutation</topic><topic>Neuroscience/Behavioral Neuroscience</topic><topic>Neuroscience/Sensory Systems</topic><topic>Pharmacology</topic><topic>Plants</topic><topic>Plants - metabolism</topic><topic>Proteins</topic><topic>Receptors, Cell Surface</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, Cell Surface - physiology</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Receptors, G-Protein-Coupled - genetics</topic><topic>Receptors, G-Protein-Coupled - metabolism</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Seeds</topic><topic>Sucrose</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitri, Christian</creatorcontrib><creatorcontrib>Soustelle, Laurent</creatorcontrib><creatorcontrib>Framery, Bérénice</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Parmentier, Marie-Laure</creatorcontrib><creatorcontrib>Grau, Yves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitri, Christian</au><au>Soustelle, Laurent</au><au>Framery, Bérénice</au><au>Bockaert, Joël</au><au>Parmentier, Marie-Laure</au><au>Grau, Yves</au><au>Bellen, Hugo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2009-06-30</date><risdate>2009</risdate><volume>7</volume><issue>6</issue><spage>e1000147</spage><pages>e1000147-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>For all animals, the taste sense is crucial to detect and avoid ingesting toxic molecules. Many toxins are synthesized by plants as a defense mechanism against insect predation. One example of such a natural toxic molecule is L-canavanine, a nonprotein amino acid found in the seeds of many legumes. Whether and how insects are informed that some plants contain L-canavanine remains to be elucidated. In insects, the taste sense relies on gustatory receptors forming the gustatory receptor (Gr) family. Gr proteins display highly divergent sequences, suggesting that they could cover the entire range of tastants. However, one cannot exclude the possibility of evolutionarily independent taste receptors. Here, we show that L-canavanine is not only toxic, but is also a repellent for Drosophila. Using a pharmacogenetic approach, we find that flies sense food containing this poison by the DmX receptor. DmXR is an insect orphan G-protein-coupled receptor that has partially diverged in its ligand binding pocket from the metabotropic glutamate receptor family. Blockade of DmXR function with an antagonist lowers the repulsive effect of L-canavanine. In addition, disruption of the DmXR encoding gene, called mangetout (mtt), suppresses the L-canavanine repellent effect. To avoid the ingestion of L-canavanine, DmXR expression is required in bitter-sensitive gustatory receptor neurons, where it triggers the premature retraction of the proboscis, thus leading to the end of food searching. These findings show that the DmX receptor, which does not belong to the Gr family, fulfills a gustatory function necessary to avoid eating a natural toxin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19564899</pmid><doi>10.1371/journal.pbio.1000147</doi><orcidid>https://orcid.org/0000-0001-6133-3413</orcidid><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0003-3882-2029</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2009-06, Vol.7 (6), p.e1000147
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1297521778
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Animals
Avoidance Learning
Avoidance Learning - drug effects
Behavior
Biochemistry, Molecular Biology
Canavanine
Canavanine - metabolism
Canavanine - pharmacology
Cell Biology/Neuronal Signaling Mechanisms
Cell Line
Cell receptors
Chemoreceptor Cells
Chemoreceptor Cells - cytology
Chemoreceptor Cells - drug effects
Chemoreceptor Cells - metabolism
Control
Drosophila
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila melanogaster - physiology
Drosophila Proteins
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Drosophila Proteins - physiology
Feeding Behavior
Feeding Behavior - drug effects
Food
G proteins
Gene Expression
Gene Expression - drug effects
Gene Expression Profiling
Genetic aspects
Genetics and Genomics/Gene Function
Humans
Immunohistochemistry
In Situ Hybridization
Insecticides
Insecticides - metabolism
Insecticides - pharmacology
Insects
Life Sciences
Ligands
Mutation
Neuroscience/Behavioral Neuroscience
Neuroscience/Sensory Systems
Pharmacology
Plants
Plants - metabolism
Proteins
Receptors, Cell Surface
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Receptors, Cell Surface - physiology
Receptors, G-Protein-Coupled
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Receptors, G-Protein-Coupled - physiology
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
Seeds
Sucrose
Toxins
title Plant insecticide L-canavanine repels Drosophila via the insect orphan GPCR DmX
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20insecticide%20L-canavanine%20repels%20Drosophila%20via%20the%20insect%20orphan%20GPCR%20DmX&rft.jtitle=PLoS%20biology&rft.au=Mitri,%20Christian&rft.date=2009-06-30&rft.volume=7&rft.issue=6&rft.spage=e1000147&rft.pages=e1000147-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000147&rft_dat=%3Cgale_plos_%3EA638106066%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19564899&rft_galeid=A638106066&rft_doaj_id=oai_doaj_org_article_2b15ffe78a3740a39bcadcf0e3326dca&rfr_iscdi=true