Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila

The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-04, Vol.6 (4), p.e14686-e14686
Hauptverfasser: Slattery, Matthew, Ma, Lijia, Négre, Nicolas, White, Kevin P, Mann, Richard S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e14686
container_issue 4
container_start_page e14686
container_title PloS one
container_volume 6
creator Slattery, Matthew
Ma, Lijia
Négre, Nicolas
White, Kevin P
Mann, Richard S
description The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly.
doi_str_mv 10.1371/journal.pone.0014686
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1296307819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476898742</galeid><doaj_id>oai_doaj_org_article_9e8af76dec7e4a5b94c60bce6f3bb5f2</doaj_id><sourcerecordid>A476898742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-89960cf9f2bc972a564b9b54d0b0dcd60af4446b1848f7dda20a6c048941e8e3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEomXhHyCIhATikMVJHH9ckKoC7UqVKkHhajnOeOMqG6e2A9t_j7ebVhvUA8rBseeZdyZvPEnyOkfLvKT5p2s7ul52y8H2sEQox4SRJ8lxzssiIwUqnx68HyUvvL9GqCoZIc-ToyLHrCSkPE6GM-jtBrI_poE0GO9HyPwAymijUqvUOMhe3aZWp6GF9Nxu08HZAKZPf3bBydqE1jq5TWXf3EWV1VIF6-JmY6dYhL846-3Qmk6-TJ5p2Xl4Na2L5Orb16vT8-zi8mx1enKRKVrRkDHOCVKa66JWnBayIrjmdYUbVKNGNQRJjTEmdc4w07RpZIEkUQgzjnNgUC6St3vZobNeTF55kReclIiy6MwiWe2JxsprMTizke5WWGnE3YF1ayFdMKoDwYFJTUkDigKWVc2xIqhWQHRZ15UuotbnqdpYb6BR0EdvupnoPNKbVqztbxF7yQklUeDDJODszQg-iI3xCrpO9mBHLxjJKS8YopF89w_5-MdN1FrG_k2vbSyrdpriBFPCOKN41_byESo-DWyMivdKm3g-S_g4S4hMgG1Yy9F7sfrx_f_Zy19z9v0B24LsQuttNwZjez8H8R5U8UJ5B_rB4xyJ3VjcuyF2YyGmsYhpbw7_z0PS_RyUfwFhEAo7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296307819</pqid></control><display><type>article</type><title>Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Slattery, Matthew ; Ma, Lijia ; Négre, Nicolas ; White, Kevin P ; Mann, Richard S</creator><contributor>Gibson, Greg</contributor><creatorcontrib>Slattery, Matthew ; Ma, Lijia ; Négre, Nicolas ; White, Kevin P ; Mann, Richard S ; Gibson, Greg</creatorcontrib><description>The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0014686</identifier><identifier>PMID: 21483663</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Base Sequence ; Binding sites ; Biochemistry ; Biology ; Biophysics ; Cell growth ; Chromatin Immunoprecipitation ; Deoxyribonucleic acid ; Developmental Biology ; Developmental Biology/Developmental Molecular Mechanisms ; Developmental Biology/Molecular Development ; Developmental Biology/Pattern Formation ; DNA ; DNA binding proteins ; DNA sequencing ; Drosophila ; Drosophila melanogaster - anatomy &amp; histology ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - metabolism ; Embryonic development ; Embryos ; Epigenetics ; Evolution ; Gene expression ; Gene Expression Profiling ; Gene Regulatory Networks - genetics ; Genes ; Genes, Insect - genetics ; Genetic aspects ; Genetic engineering ; Genetics and Genomics ; Genetics and Genomics/Bioinformatics ; Genetics and Genomics/Functional Genomics ; Genomes ; Genomics ; Genomics - methods ; Homeobox ; Homeodomain Proteins - metabolism ; HOX gene ; HOX protein ; Imaginal discs ; Insects ; Leg ; Mutants ; Nucleotide sequence ; Oligonucleotide Array Sequence Analysis ; Open access ; Organ Specificity ; Proteins ; Repetitive Sequences, Nucleic Acid - genetics ; Reproducibility of Results ; Signal Transduction - genetics ; Thorax ; Transcription (Genetics) ; Transcription factors ; Transcription Factors - metabolism ; Wings, Animal - metabolism</subject><ispartof>PloS one, 2011-04, Vol.6 (4), p.e14686-e14686</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Copyright Public Library of Science Apr 2011</rights><rights>Slattery et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-89960cf9f2bc972a564b9b54d0b0dcd60af4446b1848f7dda20a6c048941e8e3</citedby><cites>FETCH-LOGICAL-c757t-89960cf9f2bc972a564b9b54d0b0dcd60af4446b1848f7dda20a6c048941e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071676/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071676/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21483663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gibson, Greg</contributor><creatorcontrib>Slattery, Matthew</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Négre, Nicolas</creatorcontrib><creatorcontrib>White, Kevin P</creatorcontrib><creatorcontrib>Mann, Richard S</creatorcontrib><title>Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly.</description><subject>Analysis</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cell growth</subject><subject>Chromatin Immunoprecipitation</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>Developmental Biology/Developmental Molecular Mechanisms</subject><subject>Developmental Biology/Molecular Development</subject><subject>Developmental Biology/Pattern Formation</subject><subject>DNA</subject><subject>DNA binding proteins</subject><subject>DNA sequencing</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - anatomy &amp; histology</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryonic development</subject><subject>Embryos</subject><subject>Epigenetics</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genes, Insect - genetics</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetics and Genomics</subject><subject>Genetics and Genomics/Bioinformatics</subject><subject>Genetics and Genomics/Functional Genomics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Homeobox</subject><subject>Homeodomain Proteins - metabolism</subject><subject>HOX gene</subject><subject>HOX protein</subject><subject>Imaginal discs</subject><subject>Insects</subject><subject>Leg</subject><subject>Mutants</subject><subject>Nucleotide sequence</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Open access</subject><subject>Organ Specificity</subject><subject>Proteins</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Reproducibility of Results</subject><subject>Signal Transduction - genetics</subject><subject>Thorax</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Wings, Animal - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEomXhHyCIhATikMVJHH9ckKoC7UqVKkHhajnOeOMqG6e2A9t_j7ebVhvUA8rBseeZdyZvPEnyOkfLvKT5p2s7ul52y8H2sEQox4SRJ8lxzssiIwUqnx68HyUvvL9GqCoZIc-ToyLHrCSkPE6GM-jtBrI_poE0GO9HyPwAymijUqvUOMhe3aZWp6GF9Nxu08HZAKZPf3bBydqE1jq5TWXf3EWV1VIF6-JmY6dYhL846-3Qmk6-TJ5p2Xl4Na2L5Orb16vT8-zi8mx1enKRKVrRkDHOCVKa66JWnBayIrjmdYUbVKNGNQRJjTEmdc4w07RpZIEkUQgzjnNgUC6St3vZobNeTF55kReclIiy6MwiWe2JxsprMTizke5WWGnE3YF1ayFdMKoDwYFJTUkDigKWVc2xIqhWQHRZ15UuotbnqdpYb6BR0EdvupnoPNKbVqztbxF7yQklUeDDJODszQg-iI3xCrpO9mBHLxjJKS8YopF89w_5-MdN1FrG_k2vbSyrdpriBFPCOKN41_byESo-DWyMivdKm3g-S_g4S4hMgG1Yy9F7sfrx_f_Zy19z9v0B24LsQuttNwZjez8H8R5U8UJ5B_rB4xyJ3VjcuyF2YyGmsYhpbw7_z0PS_RyUfwFhEAo7</recordid><startdate>20110405</startdate><enddate>20110405</enddate><creator>Slattery, Matthew</creator><creator>Ma, Lijia</creator><creator>Négre, Nicolas</creator><creator>White, Kevin P</creator><creator>Mann, Richard S</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110405</creationdate><title>Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila</title><author>Slattery, Matthew ; Ma, Lijia ; Négre, Nicolas ; White, Kevin P ; Mann, Richard S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-89960cf9f2bc972a564b9b54d0b0dcd60af4446b1848f7dda20a6c048941e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cell growth</topic><topic>Chromatin Immunoprecipitation</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>Developmental Biology/Developmental Molecular Mechanisms</topic><topic>Developmental Biology/Molecular Development</topic><topic>Developmental Biology/Pattern Formation</topic><topic>DNA</topic><topic>DNA binding proteins</topic><topic>DNA sequencing</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - anatomy &amp; histology</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryonic development</topic><topic>Embryos</topic><topic>Epigenetics</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genes, Insect - genetics</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetics and Genomics</topic><topic>Genetics and Genomics/Bioinformatics</topic><topic>Genetics and Genomics/Functional Genomics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Homeobox</topic><topic>Homeodomain Proteins - metabolism</topic><topic>HOX gene</topic><topic>HOX protein</topic><topic>Imaginal discs</topic><topic>Insects</topic><topic>Leg</topic><topic>Mutants</topic><topic>Nucleotide sequence</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Open access</topic><topic>Organ Specificity</topic><topic>Proteins</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Reproducibility of Results</topic><topic>Signal Transduction - genetics</topic><topic>Thorax</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Wings, Animal - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slattery, Matthew</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><creatorcontrib>Négre, Nicolas</creatorcontrib><creatorcontrib>White, Kevin P</creatorcontrib><creatorcontrib>Mann, Richard S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slattery, Matthew</au><au>Ma, Lijia</au><au>Négre, Nicolas</au><au>White, Kevin P</au><au>Mann, Richard S</au><au>Gibson, Greg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-04-05</date><risdate>2011</risdate><volume>6</volume><issue>4</issue><spage>e14686</spage><epage>e14686</epage><pages>e14686-e14686</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Hox genes are responsible for generating morphological diversity along the anterior-posterior axis during animal development. The Drosophila Hox gene Ultrabithorax (Ubx), for example, is required for specifying the identity of the third thoracic (T3) segment of the adult, which includes the dorsal haltere, an appendage required for flight, and the ventral T3 leg. Ubx mutants show homeotic transformations of the T3 leg towards the identity of the T2 leg and the haltere towards the wing. All Hox genes, including Ubx, encode homeodomain containing transcription factors, raising the question of what target genes Ubx regulates to generate these adult structures. To address this question, we carried out whole genome ChIP-chip studies to identify all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are the precursors to these adult structures. In addition, we used ChIP-chip to identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to previous ChIP-chip studies carried out in Drosophila embryos, these binding studies reveal that there is a remarkable amount of tissue- and transcription factor-specific binding. Analyses of the putative target genes bound and regulated by these factors suggest that Ubx regulates many downstream transcription factors and developmental pathways in the haltere and T3 leg. Finally, we discovered additional DNA sequence motifs that in some cases are specific for individual data sets, arguing that Ubx and/or Hth work together with many regionally expressed transcription factors to execute their functions. Together, these data provide the first whole-genome analysis of the binding sites and target genes regulated by Ubx to specify the morphologies of the adult T3 segment of the fly.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21483663</pmid><doi>10.1371/journal.pone.0014686</doi><tpages>e14686</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-04, Vol.6 (4), p.e14686-e14686
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1296307819
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Base Sequence
Binding sites
Biochemistry
Biology
Biophysics
Cell growth
Chromatin Immunoprecipitation
Deoxyribonucleic acid
Developmental Biology
Developmental Biology/Developmental Molecular Mechanisms
Developmental Biology/Molecular Development
Developmental Biology/Pattern Formation
DNA
DNA binding proteins
DNA sequencing
Drosophila
Drosophila melanogaster - anatomy & histology
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Embryonic development
Embryos
Epigenetics
Evolution
Gene expression
Gene Expression Profiling
Gene Regulatory Networks - genetics
Genes
Genes, Insect - genetics
Genetic aspects
Genetic engineering
Genetics and Genomics
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Functional Genomics
Genomes
Genomics
Genomics - methods
Homeobox
Homeodomain Proteins - metabolism
HOX gene
HOX protein
Imaginal discs
Insects
Leg
Mutants
Nucleotide sequence
Oligonucleotide Array Sequence Analysis
Open access
Organ Specificity
Proteins
Repetitive Sequences, Nucleic Acid - genetics
Reproducibility of Results
Signal Transduction - genetics
Thorax
Transcription (Genetics)
Transcription factors
Transcription Factors - metabolism
Wings, Animal - metabolism
title Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A02%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20tissue-specific%20occupancy%20of%20the%20Hox%20protein%20Ultrabithorax%20and%20Hox%20cofactor%20Homothorax%20in%20Drosophila&rft.jtitle=PloS%20one&rft.au=Slattery,%20Matthew&rft.date=2011-04-05&rft.volume=6&rft.issue=4&rft.spage=e14686&rft.epage=e14686&rft.pages=e14686-e14686&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0014686&rft_dat=%3Cgale_plos_%3EA476898742%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1296307819&rft_id=info:pmid/21483663&rft_galeid=A476898742&rft_doaj_id=oai_doaj_org_article_9e8af76dec7e4a5b94c60bce6f3bb5f2&rfr_iscdi=true