Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors

Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. We used the Hopfield net as the archetypical examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-12, Vol.5 (12), p.e14413-e14413
Hauptverfasser: Anafi, Ron C, Bates, Jason H T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e14413
container_issue 12
container_start_page e14413
container_title PloS one
container_volume 5
creator Anafi, Ron C
Bates, Jason H T
description Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. We used the Hopfield net as the archetypical example of a dynamic biological network. By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with more than about twice the minimum of links, the net became increasingly able to support a second attractor. We speculate that homeostatic biological networks may have evolved to assume a degree of connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.
doi_str_mv 10.1371/journal.pone.0014413
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1296221173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473813441</galeid><doaj_id>oai_doaj_org_article_f03a76be6eaf496b8f16dd379616b1a3</doaj_id><sourcerecordid>A473813441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-50856250ba24a2f2428cfd7a422e60907e746fc8016d338a00b5caf52406fb453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLguLFjPlq2t4srIu6AwsLft2G0zTpZEibbpOK--9Nne4ylb2QXCScPO-b5JycJHmJ0QbTHH_Yu3HowG5616kNQpgxTB8lp7ikZM0Joo-P1ifJM-_3CGW04PxpckJwDGYoO01uPoKFTpquSQdXjT50yvsUGjCdD2nYqbSGrlGDT51O29EG01uVQggDyOBi2HQppJeu10bZeh1ue5W2rlZ24ivjrGuMBHukeJ480WC9ejHPq-TH50_fLy7XV9dfthfnV2vJSxzWGSoyTjJUAWFANGGkkLrOgRGiOCpRrnLGtSwQ5jWlBSBUZRJ0RhjiumIZXSWvD769dV7M2fICk5ITgnFOI7E9ELWDvegH08JwKxwY8TfghkbAEIy0SmhEIeeV4go0K3lV6HhsTfOSY15hmLzO5tPGqlW1VF18r12YLnc6sxON-yUoQkWOeTR4NxsM7mZUPojWeKlsrI5yoxcFIVmWY1ZE8s0_5MOPm6kG4v1Np91UgMlTnLOcFphOH2aVbB6g4qhVa2T8WdrE-ELwfiGITFC_QwOj92L77ev_s9c_l-zbI3anwIadd3YMxnV-CbIDKAfn_aD0fY4xElNj3GVDTI0h5saIslfH9bkX3XUC_QPHLwir</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1296221173</pqid></control><display><type>article</type><title>Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Anafi, Ron C ; Bates, Jason H T</creator><creatorcontrib>Anafi, Ron C ; Bates, Jason H T</creatorcontrib><description>Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. We used the Hopfield net as the archetypical example of a dynamic biological network. By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with more than about twice the minimum of links, the net became increasingly able to support a second attractor. We speculate that homeostatic biological networks may have evolved to assume a degree of connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0014413</identifier><identifier>PMID: 21203505</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biochemistry/Theory and Simulation ; Biological evolution ; Computational Biology/Metabolic Networks ; Computational Biology/Systems Biology ; Computer Simulation ; Connectivity ; Cytokines ; Genetic Diseases, Inborn - metabolism ; Homeostasis ; Humans ; Kinetics ; Links ; Mathematics/Nonlinear Dynamics ; Medicine ; Models, Biological ; Models, Statistical ; Molecular Biology/Bioinformatics ; Nets ; Neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Physiology/Integrative Physiology ; Proteins ; Pulmonary fibrosis ; Robustness ; Software ; Systems Biology</subject><ispartof>PloS one, 2010-12, Vol.5 (12), p.e14413-e14413</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Anafi, Bates. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Anafi, Bates. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-50856250ba24a2f2428cfd7a422e60907e746fc8016d338a00b5caf52406fb453</citedby><cites>FETCH-LOGICAL-c691t-50856250ba24a2f2428cfd7a422e60907e746fc8016d338a00b5caf52406fb453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008716/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008716/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21203505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><title>Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. We used the Hopfield net as the archetypical example of a dynamic biological network. By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with more than about twice the minimum of links, the net became increasingly able to support a second attractor. We speculate that homeostatic biological networks may have evolved to assume a degree of connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.</description><subject>Algorithms</subject><subject>Biochemistry/Theory and Simulation</subject><subject>Biological evolution</subject><subject>Computational Biology/Metabolic Networks</subject><subject>Computational Biology/Systems Biology</subject><subject>Computer Simulation</subject><subject>Connectivity</subject><subject>Cytokines</subject><subject>Genetic Diseases, Inborn - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Links</subject><subject>Mathematics/Nonlinear Dynamics</subject><subject>Medicine</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Molecular Biology/Bioinformatics</subject><subject>Nets</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Physiology/Integrative Physiology</subject><subject>Proteins</subject><subject>Pulmonary fibrosis</subject><subject>Robustness</subject><subject>Software</subject><subject>Systems Biology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLguLFjPlq2t4srIu6AwsLft2G0zTpZEibbpOK--9Nne4ylb2QXCScPO-b5JycJHmJ0QbTHH_Yu3HowG5616kNQpgxTB8lp7ikZM0Joo-P1ifJM-_3CGW04PxpckJwDGYoO01uPoKFTpquSQdXjT50yvsUGjCdD2nYqbSGrlGDT51O29EG01uVQggDyOBi2HQppJeu10bZeh1ue5W2rlZ24ivjrGuMBHukeJ480WC9ejHPq-TH50_fLy7XV9dfthfnV2vJSxzWGSoyTjJUAWFANGGkkLrOgRGiOCpRrnLGtSwQ5jWlBSBUZRJ0RhjiumIZXSWvD769dV7M2fICk5ITgnFOI7E9ELWDvegH08JwKxwY8TfghkbAEIy0SmhEIeeV4go0K3lV6HhsTfOSY15hmLzO5tPGqlW1VF18r12YLnc6sxON-yUoQkWOeTR4NxsM7mZUPojWeKlsrI5yoxcFIVmWY1ZE8s0_5MOPm6kG4v1Np91UgMlTnLOcFphOH2aVbB6g4qhVa2T8WdrE-ELwfiGITFC_QwOj92L77ev_s9c_l-zbI3anwIadd3YMxnV-CbIDKAfn_aD0fY4xElNj3GVDTI0h5saIslfH9bkX3XUC_QPHLwir</recordid><startdate>20101222</startdate><enddate>20101222</enddate><creator>Anafi, Ron C</creator><creator>Bates, Jason H T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101222</creationdate><title>Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors</title><author>Anafi, Ron C ; Bates, Jason H T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-50856250ba24a2f2428cfd7a422e60907e746fc8016d338a00b5caf52406fb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Biochemistry/Theory and Simulation</topic><topic>Biological evolution</topic><topic>Computational Biology/Metabolic Networks</topic><topic>Computational Biology/Systems Biology</topic><topic>Computer Simulation</topic><topic>Connectivity</topic><topic>Cytokines</topic><topic>Genetic Diseases, Inborn - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Links</topic><topic>Mathematics/Nonlinear Dynamics</topic><topic>Medicine</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Molecular Biology/Bioinformatics</topic><topic>Nets</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Physiology/Integrative Physiology</topic><topic>Proteins</topic><topic>Pulmonary fibrosis</topic><topic>Robustness</topic><topic>Software</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anafi, Ron C</creatorcontrib><creatorcontrib>Bates, Jason H T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anafi, Ron C</au><au>Bates, Jason H T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-12-22</date><risdate>2010</risdate><volume>5</volume><issue>12</issue><spage>e14413</spage><epage>e14413</epage><pages>e14413-e14413</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Many chronic human diseases are of unclear origin, and persist long beyond any known insult or instigating factor. These diseases may represent a structurally normal biologic network that has become trapped within the basin of an abnormal attractor. We used the Hopfield net as the archetypical example of a dynamic biological network. By progressively removing the links of fully connected Hopfield nets, we found that a designated attractor of the nets could still be supported until only slightly more than 1 link per node remained. As the number of links approached this minimum value, the rate of convergence to this attractor from an arbitrary starting state increased dramatically. Furthermore, with more than about twice the minimum of links, the net became increasingly able to support a second attractor. We speculate that homeostatic biological networks may have evolved to assume a degree of connectivity that balances robustness and agility against the dangers of becoming trapped in an abnormal attractor.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21203505</pmid><doi>10.1371/journal.pone.0014413</doi><tpages>e14413</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-12, Vol.5 (12), p.e14413-e14413
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1296221173
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Biochemistry/Theory and Simulation
Biological evolution
Computational Biology/Metabolic Networks
Computational Biology/Systems Biology
Computer Simulation
Connectivity
Cytokines
Genetic Diseases, Inborn - metabolism
Homeostasis
Humans
Kinetics
Links
Mathematics/Nonlinear Dynamics
Medicine
Models, Biological
Models, Statistical
Molecular Biology/Bioinformatics
Nets
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Physiology/Integrative Physiology
Proteins
Pulmonary fibrosis
Robustness
Software
Systems Biology
title Balancing robustness against the dangers of multiple attractors in a Hopfield-type model of biological attractors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20robustness%20against%20the%20dangers%20of%20multiple%20attractors%20in%20a%20Hopfield-type%20model%20of%20biological%20attractors&rft.jtitle=PloS%20one&rft.au=Anafi,%20Ron%20C&rft.date=2010-12-22&rft.volume=5&rft.issue=12&rft.spage=e14413&rft.epage=e14413&rft.pages=e14413-e14413&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0014413&rft_dat=%3Cgale_plos_%3EA473813441%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1296221173&rft_id=info:pmid/21203505&rft_galeid=A473813441&rft_doaj_id=oai_doaj_org_article_f03a76be6eaf496b8f16dd379616b1a3&rfr_iscdi=true