A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore

Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. Personnel with FRI (defined as fever ≥ 37.5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-03, Vol.6 (3), p.e17468-e17468
Hauptverfasser: Lee, Vernon J, Yap, Jonathan, Cook, Alex R, Tan, Chi Hsien, Loh, Jin-Phang, Koh, Wee-Hong, Lim, Elizabeth A S, Liaw, Jasper C W, Chew, Janet S W, Hossain, Iqbal, Chan, Ka Wei, Ting, Pei-Jun, Ng, Sock-Hoon, Gao, Qiuhan, Kelly, Paul M, Chen, Mark I, Tambyah, Paul A, Tan, Boon Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e17468
container_issue 3
container_start_page e17468
container_title PloS one
container_volume 6
creator Lee, Vernon J
Yap, Jonathan
Cook, Alex R
Tan, Chi Hsien
Loh, Jin-Phang
Koh, Wee-Hong
Lim, Elizabeth A S
Liaw, Jasper C W
Chew, Janet S W
Hossain, Iqbal
Chan, Ka Wei
Ting, Pei-Jun
Ng, Sock-Hoon
Gao, Qiuhan
Kelly, Paul M
Chen, Mark I
Tambyah, Paul A
Tan, Boon Huan
description Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.
doi_str_mv 10.1371/journal.pone.0017468
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1295903011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476903506</galeid><doaj_id>oai_doaj_org_article_69b1b9eecfc340ac90f574fec7378d53</doaj_id><sourcerecordid>A476903506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-e3065f5ec558dafe4c1820f2f8add4156e9ad00d64f9d00491c9ba93efb0057a3</originalsourceid><addsrcrecordid>eNqNk99qFDEUxgdRbK2-geiAoHixazKZZCY3wlL8s1AoWPU2ZJOT3ZRMMk0yan0BX9vUbsuuFJTAJDP5fV_mnJNTVU8xmmPS4TfnYYpeuvkYPMwRwl3L-nvVIeakmbEGkfs764PqUUrnCFHSM_awOmgw4Zz17LD6taiVs94q6Wpt5dqHlK2qh6DB1SbEeoygrcrWr2vrjZvA_5S1HEJ5vwxTeUo9uVwP1tks42U9QkzB-6L-bvOmNrCK1kEdIY02yhwKYp3zkFLxq8-KrxxDhMfVAyNdgifb-aj68v7d5-OPs5PTD8vjxclMdQ3JMyCIUUNBUdpraaBVuG-QaUwvtW4xZcClRkiz1vAytxwrvpKcgFmV6DtJjqrn176jC0lsc5gEbjjliCCMC7G8JnSQ52KMdihhiSCt-PMhxLWQseTIgWB8hVccQBlFWiQVR4Z2rQHVka7XlBSvt9vTptUAWoHPUbo90_0dbzdiHb4JgtqOtm0xeLU1iOFigpTFYJMC56SHMCXBMcYMd92_yZ52uCGkoYV88Rd5dxq21FqWSEvpQ_lBdeUpFm3HCkURK9T8DqoMDYNV5WaaUvx9wes9QWEy_MhrOaUklmef_p89_brPvtxhNyBd3qTgpmyDT_tgew2qGFKKYG6rgZG4aqybbIirxhLbxiqyZ7uVvBXddBL5DTQRIP4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1295903011</pqid></control><display><type>article</type><title>A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Vernon J ; Yap, Jonathan ; Cook, Alex R ; Tan, Chi Hsien ; Loh, Jin-Phang ; Koh, Wee-Hong ; Lim, Elizabeth A S ; Liaw, Jasper C W ; Chew, Janet S W ; Hossain, Iqbal ; Chan, Ka Wei ; Ting, Pei-Jun ; Ng, Sock-Hoon ; Gao, Qiuhan ; Kelly, Paul M ; Chen, Mark I ; Tambyah, Paul A ; Tan, Boon Huan</creator><contributor>Cowling, Benjamin</contributor><creatorcontrib>Lee, Vernon J ; Yap, Jonathan ; Cook, Alex R ; Tan, Chi Hsien ; Loh, Jin-Phang ; Koh, Wee-Hong ; Lim, Elizabeth A S ; Liaw, Jasper C W ; Chew, Janet S W ; Hossain, Iqbal ; Chan, Ka Wei ; Ting, Pei-Jun ; Ng, Sock-Hoon ; Gao, Qiuhan ; Kelly, Paul M ; Chen, Mark I ; Tambyah, Paul A ; Tan, Boon Huan ; Cowling, Benjamin</creatorcontrib><description>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0017468</identifier><identifier>PMID: 21399686</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Absenteeism ; Adults ; Antigens ; Biology ; Camps ; Chills ; Cough ; Demographics ; Demography ; Diagnostic equipment (Medical) ; Diagnostic systems ; Diagnostic tests ; Disease control ; Epidemiology ; Etiology ; Female ; Fever ; Fever - complications ; High temperature ; Humans ; Illnesses ; Immunology ; Infections ; Influenza ; Influenza A ; Influenza A Virus, H1N1 Subtype - genetics ; Influenza B ; Influenza, Human - complications ; Influenza, Human - diagnosis ; Influenza, Human - epidemiology ; Influenza, Human - virology ; Male ; Medical diagnosis ; Medical laboratories ; Medical research ; Medicine ; Military ; Military Personnel ; Models, Biological ; Multivariate Analysis ; Nausea ; Nose ; Pandemics ; Personnel ; Pharyngitis ; Pharynx ; Population ; Public health ; Regression models ; Reproducibility of Results ; Respiratory diseases ; Reverse Transcriptase Polymerase Chain Reaction ; Singapore - epidemiology ; Statistical analysis ; Swine flu ; Viruses ; Vomiting ; Young Adult ; Young adults ; Youth</subject><ispartof>PloS one, 2011-03, Vol.6 (3), p.e17468-e17468</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Copyright Public Library of Science Mar 2011</rights><rights>Lee et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-e3065f5ec558dafe4c1820f2f8add4156e9ad00d64f9d00491c9ba93efb0057a3</citedby><cites>FETCH-LOGICAL-c723t-e3065f5ec558dafe4c1820f2f8add4156e9ad00d64f9d00491c9ba93efb0057a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21399686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cowling, Benjamin</contributor><creatorcontrib>Lee, Vernon J</creatorcontrib><creatorcontrib>Yap, Jonathan</creatorcontrib><creatorcontrib>Cook, Alex R</creatorcontrib><creatorcontrib>Tan, Chi Hsien</creatorcontrib><creatorcontrib>Loh, Jin-Phang</creatorcontrib><creatorcontrib>Koh, Wee-Hong</creatorcontrib><creatorcontrib>Lim, Elizabeth A S</creatorcontrib><creatorcontrib>Liaw, Jasper C W</creatorcontrib><creatorcontrib>Chew, Janet S W</creatorcontrib><creatorcontrib>Hossain, Iqbal</creatorcontrib><creatorcontrib>Chan, Ka Wei</creatorcontrib><creatorcontrib>Ting, Pei-Jun</creatorcontrib><creatorcontrib>Ng, Sock-Hoon</creatorcontrib><creatorcontrib>Gao, Qiuhan</creatorcontrib><creatorcontrib>Kelly, Paul M</creatorcontrib><creatorcontrib>Chen, Mark I</creatorcontrib><creatorcontrib>Tambyah, Paul A</creatorcontrib><creatorcontrib>Tan, Boon Huan</creatorcontrib><title>A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.</description><subject>Absenteeism</subject><subject>Adults</subject><subject>Antigens</subject><subject>Biology</subject><subject>Camps</subject><subject>Chills</subject><subject>Cough</subject><subject>Demographics</subject><subject>Demography</subject><subject>Diagnostic equipment (Medical)</subject><subject>Diagnostic systems</subject><subject>Diagnostic tests</subject><subject>Disease control</subject><subject>Epidemiology</subject><subject>Etiology</subject><subject>Female</subject><subject>Fever</subject><subject>Fever - complications</subject><subject>High temperature</subject><subject>Humans</subject><subject>Illnesses</subject><subject>Immunology</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A Virus, H1N1 Subtype - genetics</subject><subject>Influenza B</subject><subject>Influenza, Human - complications</subject><subject>Influenza, Human - diagnosis</subject><subject>Influenza, Human - epidemiology</subject><subject>Influenza, Human - virology</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical laboratories</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Military</subject><subject>Military Personnel</subject><subject>Models, Biological</subject><subject>Multivariate Analysis</subject><subject>Nausea</subject><subject>Nose</subject><subject>Pandemics</subject><subject>Personnel</subject><subject>Pharyngitis</subject><subject>Pharynx</subject><subject>Population</subject><subject>Public health</subject><subject>Regression models</subject><subject>Reproducibility of Results</subject><subject>Respiratory diseases</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Singapore - epidemiology</subject><subject>Statistical analysis</subject><subject>Swine flu</subject><subject>Viruses</subject><subject>Vomiting</subject><subject>Young Adult</subject><subject>Young adults</subject><subject>Youth</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99qFDEUxgdRbK2-geiAoHixazKZZCY3wlL8s1AoWPU2ZJOT3ZRMMk0yan0BX9vUbsuuFJTAJDP5fV_mnJNTVU8xmmPS4TfnYYpeuvkYPMwRwl3L-nvVIeakmbEGkfs764PqUUrnCFHSM_awOmgw4Zz17LD6taiVs94q6Wpt5dqHlK2qh6DB1SbEeoygrcrWr2vrjZvA_5S1HEJ5vwxTeUo9uVwP1tks42U9QkzB-6L-bvOmNrCK1kEdIY02yhwKYp3zkFLxq8-KrxxDhMfVAyNdgifb-aj68v7d5-OPs5PTD8vjxclMdQ3JMyCIUUNBUdpraaBVuG-QaUwvtW4xZcClRkiz1vAytxwrvpKcgFmV6DtJjqrn176jC0lsc5gEbjjliCCMC7G8JnSQ52KMdihhiSCt-PMhxLWQseTIgWB8hVccQBlFWiQVR4Z2rQHVka7XlBSvt9vTptUAWoHPUbo90_0dbzdiHb4JgtqOtm0xeLU1iOFigpTFYJMC56SHMCXBMcYMd92_yZ52uCGkoYV88Rd5dxq21FqWSEvpQ_lBdeUpFm3HCkURK9T8DqoMDYNV5WaaUvx9wes9QWEy_MhrOaUklmef_p89_brPvtxhNyBd3qTgpmyDT_tgew2qGFKKYG6rgZG4aqybbIirxhLbxiqyZ7uVvBXddBL5DTQRIP4</recordid><startdate>20110302</startdate><enddate>20110302</enddate><creator>Lee, Vernon J</creator><creator>Yap, Jonathan</creator><creator>Cook, Alex R</creator><creator>Tan, Chi Hsien</creator><creator>Loh, Jin-Phang</creator><creator>Koh, Wee-Hong</creator><creator>Lim, Elizabeth A S</creator><creator>Liaw, Jasper C W</creator><creator>Chew, Janet S W</creator><creator>Hossain, Iqbal</creator><creator>Chan, Ka Wei</creator><creator>Ting, Pei-Jun</creator><creator>Ng, Sock-Hoon</creator><creator>Gao, Qiuhan</creator><creator>Kelly, Paul M</creator><creator>Chen, Mark I</creator><creator>Tambyah, Paul A</creator><creator>Tan, Boon Huan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110302</creationdate><title>A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore</title><author>Lee, Vernon J ; Yap, Jonathan ; Cook, Alex R ; Tan, Chi Hsien ; Loh, Jin-Phang ; Koh, Wee-Hong ; Lim, Elizabeth A S ; Liaw, Jasper C W ; Chew, Janet S W ; Hossain, Iqbal ; Chan, Ka Wei ; Ting, Pei-Jun ; Ng, Sock-Hoon ; Gao, Qiuhan ; Kelly, Paul M ; Chen, Mark I ; Tambyah, Paul A ; Tan, Boon Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-e3065f5ec558dafe4c1820f2f8add4156e9ad00d64f9d00491c9ba93efb0057a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Absenteeism</topic><topic>Adults</topic><topic>Antigens</topic><topic>Biology</topic><topic>Camps</topic><topic>Chills</topic><topic>Cough</topic><topic>Demographics</topic><topic>Demography</topic><topic>Diagnostic equipment (Medical)</topic><topic>Diagnostic systems</topic><topic>Diagnostic tests</topic><topic>Disease control</topic><topic>Epidemiology</topic><topic>Etiology</topic><topic>Female</topic><topic>Fever</topic><topic>Fever - complications</topic><topic>High temperature</topic><topic>Humans</topic><topic>Illnesses</topic><topic>Immunology</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A Virus, H1N1 Subtype - genetics</topic><topic>Influenza B</topic><topic>Influenza, Human - complications</topic><topic>Influenza, Human - diagnosis</topic><topic>Influenza, Human - epidemiology</topic><topic>Influenza, Human - virology</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical laboratories</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Military</topic><topic>Military Personnel</topic><topic>Models, Biological</topic><topic>Multivariate Analysis</topic><topic>Nausea</topic><topic>Nose</topic><topic>Pandemics</topic><topic>Personnel</topic><topic>Pharyngitis</topic><topic>Pharynx</topic><topic>Population</topic><topic>Public health</topic><topic>Regression models</topic><topic>Reproducibility of Results</topic><topic>Respiratory diseases</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Singapore - epidemiology</topic><topic>Statistical analysis</topic><topic>Swine flu</topic><topic>Viruses</topic><topic>Vomiting</topic><topic>Young Adult</topic><topic>Young adults</topic><topic>Youth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Vernon J</creatorcontrib><creatorcontrib>Yap, Jonathan</creatorcontrib><creatorcontrib>Cook, Alex R</creatorcontrib><creatorcontrib>Tan, Chi Hsien</creatorcontrib><creatorcontrib>Loh, Jin-Phang</creatorcontrib><creatorcontrib>Koh, Wee-Hong</creatorcontrib><creatorcontrib>Lim, Elizabeth A S</creatorcontrib><creatorcontrib>Liaw, Jasper C W</creatorcontrib><creatorcontrib>Chew, Janet S W</creatorcontrib><creatorcontrib>Hossain, Iqbal</creatorcontrib><creatorcontrib>Chan, Ka Wei</creatorcontrib><creatorcontrib>Ting, Pei-Jun</creatorcontrib><creatorcontrib>Ng, Sock-Hoon</creatorcontrib><creatorcontrib>Gao, Qiuhan</creatorcontrib><creatorcontrib>Kelly, Paul M</creatorcontrib><creatorcontrib>Chen, Mark I</creatorcontrib><creatorcontrib>Tambyah, Paul A</creatorcontrib><creatorcontrib>Tan, Boon Huan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Vernon J</au><au>Yap, Jonathan</au><au>Cook, Alex R</au><au>Tan, Chi Hsien</au><au>Loh, Jin-Phang</au><au>Koh, Wee-Hong</au><au>Lim, Elizabeth A S</au><au>Liaw, Jasper C W</au><au>Chew, Janet S W</au><au>Hossain, Iqbal</au><au>Chan, Ka Wei</au><au>Ting, Pei-Jun</au><au>Ng, Sock-Hoon</au><au>Gao, Qiuhan</au><au>Kelly, Paul M</au><au>Chen, Mark I</au><au>Tambyah, Paul A</au><au>Tan, Boon Huan</au><au>Cowling, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-03-02</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>e17468</spage><epage>e17468</epage><pages>e17468-e17468</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection. Personnel with FRI (defined as fever ≥ 37.5 °C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model. 821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria. Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21399686</pmid><doi>10.1371/journal.pone.0017468</doi><tpages>e17468</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-03, Vol.6 (3), p.e17468-e17468
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1295903011
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Absenteeism
Adults
Antigens
Biology
Camps
Chills
Cough
Demographics
Demography
Diagnostic equipment (Medical)
Diagnostic systems
Diagnostic tests
Disease control
Epidemiology
Etiology
Female
Fever
Fever - complications
High temperature
Humans
Illnesses
Immunology
Infections
Influenza
Influenza A
Influenza A Virus, H1N1 Subtype - genetics
Influenza B
Influenza, Human - complications
Influenza, Human - diagnosis
Influenza, Human - epidemiology
Influenza, Human - virology
Male
Medical diagnosis
Medical laboratories
Medical research
Medicine
Military
Military Personnel
Models, Biological
Multivariate Analysis
Nausea
Nose
Pandemics
Personnel
Pharyngitis
Pharynx
Population
Public health
Regression models
Reproducibility of Results
Respiratory diseases
Reverse Transcriptase Polymerase Chain Reaction
Singapore - epidemiology
Statistical analysis
Swine flu
Viruses
Vomiting
Young Adult
Young adults
Youth
title A clinical diagnostic model for predicting influenza among young adult military personnel with febrile respiratory illness in Singapore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T22%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20clinical%20diagnostic%20model%20for%20predicting%20influenza%20among%20young%20adult%20military%20personnel%20with%20febrile%20respiratory%20illness%20in%20Singapore&rft.jtitle=PloS%20one&rft.au=Lee,%20Vernon%20J&rft.date=2011-03-02&rft.volume=6&rft.issue=3&rft.spage=e17468&rft.epage=e17468&rft.pages=e17468-e17468&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0017468&rft_dat=%3Cgale_plos_%3EA476903506%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1295903011&rft_id=info:pmid/21399686&rft_galeid=A476903506&rft_doaj_id=oai_doaj_org_article_69b1b9eecfc340ac90f574fec7378d53&rfr_iscdi=true