A geometrical model for DNA organization in bacteria
Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-11, Vol.5 (11), p.e13806-e13806 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e13806 |
---|---|
container_issue | 11 |
container_start_page | e13806 |
container_title | PloS one |
container_volume | 5 |
creator | Buenemann, Mathias Lenz, Peter |
description | Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli. |
doi_str_mv | 10.1371/journal.pone.0013806 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1295379644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473838781</galeid><doaj_id>oai_doaj_org_article_91428de7eebc4a0d8065ac1cdd6a56a7</doaj_id><sourcerecordid>A473838781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-39d26d54474c687b7d0013df270c9226956ee67b020b3df37e3a8e40229572a33</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLguKLXdMkTdI3wnI-LRwe-PQ2pMl0N0va7CWtqJ_e1O0dWzlQ8iJh8pt_ZiYzWfa4QMuC8OLVzg-hU2659x0sESqIQOxOdlpUBC8YRuTu0fkkexDjDqGSCMbuZye4QKKkjJ5mdJVvwLfQB6uVy1tvwOWND_mbj6vch43q7C_VW9_ltstrpXsIVj3M7jXKRXg07WfZ13dvv5x_WFxcvl-fry4WmmPSL0hlMDMlpZxqJnjNzRimaTBHusKYVSUDYLxGGNXJTDgQJYAijKuSY0XIWfb0oLt3Psop4SiLdE94xShNxPpAGK92ch9sq8JP6ZWVfwwpAalCb7UDWRUUCwMcoNZUIZPKVSpdaGOYKpniSev19NpQt2A0dH1QbiY6v-nsVm78d4krjjEag3kxCQR_NUDsZWujBudUB36IUjBa0UqQ6t8kEpSViIlEPvuLvL0ME7VRKVPbNT4FqEdNuaKcCCK4KBK1vIVKy0BrdWqjxib7zOHlzCExPfzoN2qIUa4_f_p_9vLbnH1-xG5BuX4bvRvGPotzkB5AHXyMAZqb3yiQHKfguhpynAI5TUFye3L8kzdO121PfgPzzP7S</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1295379644</pqid></control><display><type>article</type><title>A geometrical model for DNA organization in bacteria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Buenemann, Mathias ; Lenz, Peter</creator><contributor>Driks, Adam</contributor><creatorcontrib>Buenemann, Mathias ; Lenz, Peter ; Driks, Adam</creatorcontrib><description>Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013806</identifier><identifier>PMID: 21085464</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Architects ; Bacteria ; Bacterial genetics ; Biophysics ; Caulobacter crescentus - genetics ; Cell Biology ; Chromosome Mapping ; Chromosomes ; Chromosomes, Bacterial - genetics ; Compaction ; Computational Biology ; Computer simulation ; Correlation ; Deoxyribonucleic acid ; DNA ; DNA Replication ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Circular - chemistry ; DNA, Circular - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Genomes ; Models, Molecular ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo simulation ; Mutants ; Nucleic Acid Conformation ; Physics ; Polymers ; Proteins ; Robustness (mathematics) ; Viscoelasticity</subject><ispartof>PloS one, 2010-11, Vol.5 (11), p.e13806-e13806</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Buenemann, Lenz. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Buenemann, Lenz. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-39d26d54474c687b7d0013df270c9226956ee67b020b3df37e3a8e40229572a33</citedby><cites>FETCH-LOGICAL-c723t-39d26d54474c687b7d0013df270c9226956ee67b020b3df37e3a8e40229572a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972204/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972204/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21085464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Driks, Adam</contributor><creatorcontrib>Buenemann, Mathias</creatorcontrib><creatorcontrib>Lenz, Peter</creatorcontrib><title>A geometrical model for DNA organization in bacteria</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Architects</subject><subject>Bacteria</subject><subject>Bacterial genetics</subject><subject>Biophysics</subject><subject>Caulobacter crescentus - genetics</subject><subject>Cell Biology</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Bacterial - genetics</subject><subject>Compaction</subject><subject>Computational Biology</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Replication</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Circular - chemistry</subject><subject>DNA, Circular - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Genomes</subject><subject>Models, Molecular</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Mutants</subject><subject>Nucleic Acid Conformation</subject><subject>Physics</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Robustness (mathematics)</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLguKLXdMkTdI3wnI-LRwe-PQ2pMl0N0va7CWtqJ_e1O0dWzlQ8iJh8pt_ZiYzWfa4QMuC8OLVzg-hU2659x0sESqIQOxOdlpUBC8YRuTu0fkkexDjDqGSCMbuZye4QKKkjJ5mdJVvwLfQB6uVy1tvwOWND_mbj6vch43q7C_VW9_ltstrpXsIVj3M7jXKRXg07WfZ13dvv5x_WFxcvl-fry4WmmPSL0hlMDMlpZxqJnjNzRimaTBHusKYVSUDYLxGGNXJTDgQJYAijKuSY0XIWfb0oLt3Psop4SiLdE94xShNxPpAGK92ch9sq8JP6ZWVfwwpAalCb7UDWRUUCwMcoNZUIZPKVSpdaGOYKpniSev19NpQt2A0dH1QbiY6v-nsVm78d4krjjEag3kxCQR_NUDsZWujBudUB36IUjBa0UqQ6t8kEpSViIlEPvuLvL0ME7VRKVPbNT4FqEdNuaKcCCK4KBK1vIVKy0BrdWqjxib7zOHlzCExPfzoN2qIUa4_f_p_9vLbnH1-xG5BuX4bvRvGPotzkB5AHXyMAZqb3yiQHKfguhpynAI5TUFye3L8kzdO121PfgPzzP7S</recordid><startdate>20101103</startdate><enddate>20101103</enddate><creator>Buenemann, Mathias</creator><creator>Lenz, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101103</creationdate><title>A geometrical model for DNA organization in bacteria</title><author>Buenemann, Mathias ; Lenz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-39d26d54474c687b7d0013df270c9226956ee67b020b3df37e3a8e40229572a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Architects</topic><topic>Bacteria</topic><topic>Bacterial genetics</topic><topic>Biophysics</topic><topic>Caulobacter crescentus - genetics</topic><topic>Cell Biology</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Bacterial - genetics</topic><topic>Compaction</topic><topic>Computational Biology</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Replication</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Circular - chemistry</topic><topic>DNA, Circular - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Genomes</topic><topic>Models, Molecular</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Mutants</topic><topic>Nucleic Acid Conformation</topic><topic>Physics</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Robustness (mathematics)</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buenemann, Mathias</creatorcontrib><creatorcontrib>Lenz, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buenemann, Mathias</au><au>Lenz, Peter</au><au>Driks, Adam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometrical model for DNA organization in bacteria</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-11-03</date><risdate>2010</risdate><volume>5</volume><issue>11</issue><spage>e13806</spage><epage>e13806</epage><pages>e13806-e13806</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21085464</pmid><doi>10.1371/journal.pone.0013806</doi><tpages>e13806</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-11, Vol.5 (11), p.e13806-e13806 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1295379644 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Architects Bacteria Bacterial genetics Biophysics Caulobacter crescentus - genetics Cell Biology Chromosome Mapping Chromosomes Chromosomes, Bacterial - genetics Compaction Computational Biology Computer simulation Correlation Deoxyribonucleic acid DNA DNA Replication DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Circular - chemistry DNA, Circular - genetics E coli Escherichia coli Escherichia coli - genetics Genomes Models, Molecular Monte Carlo Method Monte Carlo methods Monte Carlo simulation Mutants Nucleic Acid Conformation Physics Polymers Proteins Robustness (mathematics) Viscoelasticity |
title | A geometrical model for DNA organization in bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometrical%20model%20for%20DNA%20organization%20in%20bacteria&rft.jtitle=PloS%20one&rft.au=Buenemann,%20Mathias&rft.date=2010-11-03&rft.volume=5&rft.issue=11&rft.spage=e13806&rft.epage=e13806&rft.pages=e13806-e13806&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013806&rft_dat=%3Cgale_plos_%3EA473838781%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1295379644&rft_id=info:pmid/21085464&rft_galeid=A473838781&rft_doaj_id=oai_doaj_org_article_91428de7eebc4a0d8065ac1cdd6a56a7&rfr_iscdi=true |