Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources
Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-11, Vol.5 (11), p.e15411-e15411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e15411 |
---|---|
container_issue | 11 |
container_start_page | e15411 |
container_title | PloS one |
container_volume | 5 |
creator | Li, Tingting Du, Pufeng Xu, Nanfang |
description | Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates. |
doi_str_mv | 10.1371/journal.pone.0015411 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1295228318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473835439</galeid><doaj_id>oai_doaj_org_article_5a77e78252d44491adcd8ba334d21e69</doaj_id><sourcerecordid>A473835439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-79de465e08d0409ad29f7960f858012cd1ec2d96aa0fd3d66587c5e570c059c73</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6H4gWBMWHXfOjadIX4Tj8sXBw4K_XkE2m3ZxtU5P0cB_8301v946t3IOU0DDzmW8mM5kse47RClOO31250feqXQ2uhxVCmBUYP8hOcUXJsiSIPjzan2RPQrhCiFFRlo-zE4KRYIzj0-zP2kAfbb2zfZNvx071-U_bqwDLMIC2tdX54F0E2-fD1oW0_K5V0bo-DzZCyDe73PYRGp-MkwRE8K6BHtwYkqd2vtvjtXddfq28nRwhJa8hPM0e1aoN8OzwX2TfP374dv55eXH5aX1-drHUnPG45JWBomSAhEEFqpQhVc2rEtWCCYSJNhg0MVWpFKoNNWXJBNcMGEcasUpzushe7nWH1gV5qFyQmFSMEEGxSMR6TxinruTgbaf8Tjpl5Y3B-UYqH61uQTLFOXBBGDFFUVRYGW3ERlFaGIKhrJLW-8Np46YDo1OBvWpnonNPb7eycdeSVAIzhpLAm4OAd79GCFF2NmhoW3VTVimQKEosUjsX2at_yPsvd6AalfKfmpKO1ZOmPCs4FZQVdEp7dQ-VPgOd1emV1TbZZwFvZwGJifA7NmoMQa6_fvl_9vLHnH19xG5BtXEbXDtOzyjMwWIPau9C8FDf1RgjOQ3JbTXkNCTyMCQp7MVxf-6CbqeC_gVORQ98</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1295228318</pqid></control><display><type>article</type><title>Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Tingting ; Du, Pufeng ; Xu, Nanfang</creator><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Li, Tingting ; Du, Pufeng ; Xu, Nanfang ; Uversky, Vladimir N.</creatorcontrib><description>Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0015411</identifier><identifier>PMID: 21085571</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acids ; Automation ; Binding Sites ; Bioinformatics ; Biological activity ; Biology ; Casein ; Casein kinase II ; Casein Kinase II - metabolism ; Cell cycle ; Cell division ; Cell growth ; Computational Biology - methods ; Computer Science ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Cyclin-dependent kinases ; Cyclin-Dependent Kinases - metabolism ; Data processing ; Databases, Protein ; Deoxyribonucleic acid ; DNA ; Eukaryotes ; Genomes ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen synthesis ; Humans ; Informatics ; Information science ; Kinases ; Laboratories ; Learning ; Mitogen-Activated Protein Kinases - metabolism ; Mitogens ; Peptides ; Phosphatase ; Phosphorylation ; Post-translation ; Post-translational modifications ; Predictions ; Protein interaction ; Protein kinase A ; Protein kinase C ; Protein Kinase C - metabolism ; Protein kinases ; Protein Kinases - metabolism ; Protein-protein interactions ; Proteins ; Proteomics ; Reproducibility of Results ; RNA polymerase ; Science ; Substrates ; Translation</subject><ispartof>PloS one, 2010-11, Vol.5 (11), p.e15411-e15411</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Li et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-79de465e08d0409ad29f7960f858012cd1ec2d96aa0fd3d66587c5e570c059c73</citedby><cites>FETCH-LOGICAL-c757t-79de465e08d0409ad29f7960f858012cd1ec2d96aa0fd3d66587c5e570c059c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981550/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981550/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21085571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Du, Pufeng</creatorcontrib><creatorcontrib>Xu, Nanfang</creatorcontrib><title>Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates.</description><subject>Algorithms</subject><subject>Amino acids</subject><subject>Automation</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Casein</subject><subject>Casein kinase II</subject><subject>Casein Kinase II - metabolism</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Cyclin-dependent kinases</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>Data processing</subject><subject>Databases, Protein</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Eukaryotes</subject><subject>Genomes</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen synthesis</subject><subject>Humans</subject><subject>Informatics</subject><subject>Information science</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Mitogens</subject><subject>Peptides</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Post-translation</subject><subject>Post-translational modifications</subject><subject>Predictions</subject><subject>Protein interaction</subject><subject>Protein kinase A</subject><subject>Protein kinase C</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein kinases</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Reproducibility of Results</subject><subject>RNA polymerase</subject><subject>Science</subject><subject>Substrates</subject><subject>Translation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6H4gWBMWHXfOjadIX4Tj8sXBw4K_XkE2m3ZxtU5P0cB_8301v946t3IOU0DDzmW8mM5kse47RClOO31250feqXQ2uhxVCmBUYP8hOcUXJsiSIPjzan2RPQrhCiFFRlo-zE4KRYIzj0-zP2kAfbb2zfZNvx071-U_bqwDLMIC2tdX54F0E2-fD1oW0_K5V0bo-DzZCyDe73PYRGp-MkwRE8K6BHtwYkqd2vtvjtXddfq28nRwhJa8hPM0e1aoN8OzwX2TfP374dv55eXH5aX1-drHUnPG45JWBomSAhEEFqpQhVc2rEtWCCYSJNhg0MVWpFKoNNWXJBNcMGEcasUpzushe7nWH1gV5qFyQmFSMEEGxSMR6TxinruTgbaf8Tjpl5Y3B-UYqH61uQTLFOXBBGDFFUVRYGW3ERlFaGIKhrJLW-8Np46YDo1OBvWpnonNPb7eycdeSVAIzhpLAm4OAd79GCFF2NmhoW3VTVimQKEosUjsX2at_yPsvd6AalfKfmpKO1ZOmPCs4FZQVdEp7dQ-VPgOd1emV1TbZZwFvZwGJifA7NmoMQa6_fvl_9vLHnH19xG5BtXEbXDtOzyjMwWIPau9C8FDf1RgjOQ3JbTXkNCTyMCQp7MVxf-6CbqeC_gVORQ98</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Li, Tingting</creator><creator>Du, Pufeng</creator><creator>Xu, Nanfang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101115</creationdate><title>Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources</title><author>Li, Tingting ; Du, Pufeng ; Xu, Nanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-79de465e08d0409ad29f7960f858012cd1ec2d96aa0fd3d66587c5e570c059c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Amino acids</topic><topic>Automation</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Casein</topic><topic>Casein kinase II</topic><topic>Casein Kinase II - metabolism</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Cyclin-dependent kinases</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>Data processing</topic><topic>Databases, Protein</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Eukaryotes</topic><topic>Genomes</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen synthesis</topic><topic>Humans</topic><topic>Informatics</topic><topic>Information science</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Mitogens</topic><topic>Peptides</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Post-translation</topic><topic>Post-translational modifications</topic><topic>Predictions</topic><topic>Protein interaction</topic><topic>Protein kinase A</topic><topic>Protein kinase C</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein kinases</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Reproducibility of Results</topic><topic>RNA polymerase</topic><topic>Science</topic><topic>Substrates</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tingting</creatorcontrib><creatorcontrib>Du, Pufeng</creatorcontrib><creatorcontrib>Xu, Nanfang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tingting</au><au>Du, Pufeng</au><au>Xu, Nanfang</au><au>Uversky, Vladimir N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>5</volume><issue>11</issue><spage>e15411</spage><epage>e15411</epage><pages>e15411-e15411</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (available at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21085571</pmid><doi>10.1371/journal.pone.0015411</doi><tpages>e15411</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-11, Vol.5 (11), p.e15411-e15411 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1295228318 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Amino acids Automation Binding Sites Bioinformatics Biological activity Biology Casein Casein kinase II Casein Kinase II - metabolism Cell cycle Cell division Cell growth Computational Biology - methods Computer Science Cyclic AMP-Dependent Protein Kinases - metabolism Cyclin-dependent kinases Cyclin-Dependent Kinases - metabolism Data processing Databases, Protein Deoxyribonucleic acid DNA Eukaryotes Genomes Glycogen Glycogen synthase kinase 3 Glycogen synthesis Humans Informatics Information science Kinases Laboratories Learning Mitogen-Activated Protein Kinases - metabolism Mitogens Peptides Phosphatase Phosphorylation Post-translation Post-translational modifications Predictions Protein interaction Protein kinase A Protein kinase C Protein Kinase C - metabolism Protein kinases Protein Kinases - metabolism Protein-protein interactions Proteins Proteomics Reproducibility of Results RNA polymerase Science Substrates Translation |
title | Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20human%20kinase-specific%20protein%20phosphorylation%20sites%20by%20integrating%20heterogeneous%20information%20from%20various%20sources&rft.jtitle=PloS%20one&rft.au=Li,%20Tingting&rft.date=2010-11-15&rft.volume=5&rft.issue=11&rft.spage=e15411&rft.epage=e15411&rft.pages=e15411-e15411&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0015411&rft_dat=%3Cgale_plos_%3EA473835439%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1295228318&rft_id=info:pmid/21085571&rft_galeid=A473835439&rft_doaj_id=oai_doaj_org_article_5a77e78252d44491adcd8ba334d21e69&rfr_iscdi=true |