The association of AMPK with ULK1 regulates autophagy
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mech...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-11, Vol.5 (11), p.e15394-e15394 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e15394 |
---|---|
container_issue | 11 |
container_start_page | e15394 |
container_title | PloS one |
container_volume | 5 |
creator | Lee, Jong Woo Park, Sungman Takahashi, Yoshinori Wang, Hong-Gang |
description | Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex. |
doi_str_mv | 10.1371/journal.pone.0015394 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1295206781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473838771</galeid><doaj_id>oai_doaj_org_article_aa99219b8a6b4a5e95df73c958af4993</doaj_id><sourcerecordid>A473838771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-10754943fe86c60ce3fdc7a5fa886e424069e073f76657c7966ec2671cdd8f203</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQgJx2MUfsR1fkFYV0FUXFUHL1Zp17MSrbLyNE6D_HqebVhvUA_LB1viZd8bjN0leYjTHVOAPG9-3DdTznW_MHCHMqMweJcdYUjLjBNHHB-ej5FkIG4QYzTl_mhwRjAQhmBwn7LIyKYTgtYPO-Sb1Nl18_Xae_nZdlV6tznHamrKvoTMhhb7zuwrKm-fJEwt1MC_G_SS5-vzp8vRstrr4sjxdrGaaS9zNYhWWyYxak3PNkTbUFloAs5Dn3GQkQ1waJKgVnDOhheTcaMIF1kWR29j3SfJ6r7urfVDji4PCRDKCuMhxJJZ7ovCwUbvWbaG9UR6cug34tlTQdk7XRgFISbBc58DXGTAjWWEF1ZLlYDMpadT6OFbr11tTaNN0LdQT0elN4ypV-l-KyGGaIgq8GwVaf92b0KmtC9rUNTTG90EJnrGM05xF8s0_5MOPG6kSYv-usT6W1YOmWmSC5jQXYqDmD1BxFWbrdHSHdTE-SXg_SYhMZ_50JfQhqOWP7__PXvycsm8P2MpA3VXB1_3gqzAFsz2oWx9Ca-z9jDFSg7nvpqEGc6vR3DHt1eH_3CfduZn-BZht8W4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1295206781</pqid></control><display><type>article</type><title>The association of AMPK with ULK1 regulates autophagy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Jong Woo ; Park, Sungman ; Takahashi, Yoshinori ; Wang, Hong-Gang</creator><contributor>Wu, Gen Sheng</contributor><creatorcontrib>Lee, Jong Woo ; Park, Sungman ; Takahashi, Yoshinori ; Wang, Hong-Gang ; Wu, Gen Sheng</creatorcontrib><description>Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0015394</identifier><identifier>PMID: 21072212</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>14-3-3 protein ; 14-3-3 Proteins - genetics ; 14-3-3 Proteins - metabolism ; Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Apoptosis ; Autophagy ; Autophagy-Related Protein-1 Homolog ; Binding ; Binding Sites ; Biodegradation ; Biology ; Cancer ; Cell cycle ; Cell death ; Cell growth ; Cell Line ; Cell Line, Tumor ; Cells, Cultured ; Deactivation ; Drosophila ; Environmental degradation ; Environmental stress ; HEK293 Cells ; Homology ; Humans ; Immunoblotting ; Immunoprecipitation ; Inactivation ; Insects ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; Mammals ; Mechanistic Target of Rapamycin Complex 1 ; Medicine ; Metabolism ; Mice ; Mice, Knockout ; Microscopy, Fluorescence ; Multiprotein Complexes ; Mutation ; Phagocytosis ; Pharmacology ; Phosphorylation ; Protein Binding ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Protein-serine/threonine kinase ; Proteins ; Proteins - genetics ; Proteins - metabolism ; Regulation ; Regulatory-Associated Protein of mTOR ; RNA Interference ; Threonine ; TOR protein ; TOR Serine-Threonine Kinases ; Transfection ; Tuberous Sclerosis Complex 2 ; Yeast</subject><ispartof>PloS one, 2010-11, Vol.5 (11), p.e15394-e15394</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Lee et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-10754943fe86c60ce3fdc7a5fa886e424069e073f76657c7966ec2671cdd8f203</citedby><cites>FETCH-LOGICAL-c691t-10754943fe86c60ce3fdc7a5fa886e424069e073f76657c7966ec2671cdd8f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21072212$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wu, Gen Sheng</contributor><creatorcontrib>Lee, Jong Woo</creatorcontrib><creatorcontrib>Park, Sungman</creatorcontrib><creatorcontrib>Takahashi, Yoshinori</creatorcontrib><creatorcontrib>Wang, Hong-Gang</creatorcontrib><title>The association of AMPK with ULK1 regulates autophagy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.</description><subject>14-3-3 protein</subject><subject>14-3-3 Proteins - genetics</subject><subject>14-3-3 Proteins - metabolism</subject><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein-1 Homolog</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Biodegradation</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cells, Cultured</subject><subject>Deactivation</subject><subject>Drosophila</subject><subject>Environmental degradation</subject><subject>Environmental stress</subject><subject>HEK293 Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Immunoprecipitation</subject><subject>Inactivation</subject><subject>Insects</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>Mammals</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microscopy, Fluorescence</subject><subject>Multiprotein Complexes</subject><subject>Mutation</subject><subject>Phagocytosis</subject><subject>Pharmacology</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-serine/threonine kinase</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Regulation</subject><subject>Regulatory-Associated Protein of mTOR</subject><subject>RNA Interference</subject><subject>Threonine</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases</subject><subject>Transfection</subject><subject>Tuberous Sclerosis Complex 2</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQgJx2MUfsR1fkFYV0FUXFUHL1Zp17MSrbLyNE6D_HqebVhvUA_LB1viZd8bjN0leYjTHVOAPG9-3DdTznW_MHCHMqMweJcdYUjLjBNHHB-ej5FkIG4QYzTl_mhwRjAQhmBwn7LIyKYTgtYPO-Sb1Nl18_Xae_nZdlV6tznHamrKvoTMhhb7zuwrKm-fJEwt1MC_G_SS5-vzp8vRstrr4sjxdrGaaS9zNYhWWyYxak3PNkTbUFloAs5Dn3GQkQ1waJKgVnDOhheTcaMIF1kWR29j3SfJ6r7urfVDji4PCRDKCuMhxJJZ7ovCwUbvWbaG9UR6cug34tlTQdk7XRgFISbBc58DXGTAjWWEF1ZLlYDMpadT6OFbr11tTaNN0LdQT0elN4ypV-l-KyGGaIgq8GwVaf92b0KmtC9rUNTTG90EJnrGM05xF8s0_5MOPG6kSYv-usT6W1YOmWmSC5jQXYqDmD1BxFWbrdHSHdTE-SXg_SYhMZ_50JfQhqOWP7__PXvycsm8P2MpA3VXB1_3gqzAFsz2oWx9Ca-z9jDFSg7nvpqEGc6vR3DHt1eH_3CfduZn-BZht8W4</recordid><startdate>20101103</startdate><enddate>20101103</enddate><creator>Lee, Jong Woo</creator><creator>Park, Sungman</creator><creator>Takahashi, Yoshinori</creator><creator>Wang, Hong-Gang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101103</creationdate><title>The association of AMPK with ULK1 regulates autophagy</title><author>Lee, Jong Woo ; Park, Sungman ; Takahashi, Yoshinori ; Wang, Hong-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-10754943fe86c60ce3fdc7a5fa886e424069e073f76657c7966ec2671cdd8f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>14-3-3 protein</topic><topic>14-3-3 Proteins - genetics</topic><topic>14-3-3 Proteins - metabolism</topic><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein-1 Homolog</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Biodegradation</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cells, Cultured</topic><topic>Deactivation</topic><topic>Drosophila</topic><topic>Environmental degradation</topic><topic>Environmental stress</topic><topic>HEK293 Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Immunoprecipitation</topic><topic>Inactivation</topic><topic>Insects</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>Mammals</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microscopy, Fluorescence</topic><topic>Multiprotein Complexes</topic><topic>Mutation</topic><topic>Phagocytosis</topic><topic>Pharmacology</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-serine/threonine kinase</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Regulation</topic><topic>Regulatory-Associated Protein of mTOR</topic><topic>RNA Interference</topic><topic>Threonine</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases</topic><topic>Transfection</topic><topic>Tuberous Sclerosis Complex 2</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jong Woo</creatorcontrib><creatorcontrib>Park, Sungman</creatorcontrib><creatorcontrib>Takahashi, Yoshinori</creatorcontrib><creatorcontrib>Wang, Hong-Gang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jong Woo</au><au>Park, Sungman</au><au>Takahashi, Yoshinori</au><au>Wang, Hong-Gang</au><au>Wu, Gen Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The association of AMPK with ULK1 regulates autophagy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-11-03</date><risdate>2010</risdate><volume>5</volume><issue>11</issue><spage>e15394</spage><epage>e15394</epage><pages>e15394-e15394</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21072212</pmid><doi>10.1371/journal.pone.0015394</doi><tpages>e15394</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-11, Vol.5 (11), p.e15394-e15394 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1295206781 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 14-3-3 protein 14-3-3 Proteins - genetics 14-3-3 Proteins - metabolism Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism AMP-Activated Protein Kinases - genetics AMP-Activated Protein Kinases - metabolism Animals Apoptosis Autophagy Autophagy-Related Protein-1 Homolog Binding Binding Sites Biodegradation Biology Cancer Cell cycle Cell death Cell growth Cell Line Cell Line, Tumor Cells, Cultured Deactivation Drosophila Environmental degradation Environmental stress HEK293 Cells Homology Humans Immunoblotting Immunoprecipitation Inactivation Insects Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Kinases Mammals Mechanistic Target of Rapamycin Complex 1 Medicine Metabolism Mice Mice, Knockout Microscopy, Fluorescence Multiprotein Complexes Mutation Phagocytosis Pharmacology Phosphorylation Protein Binding Protein Subunits - genetics Protein Subunits - metabolism Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Protein-serine/threonine kinase Proteins Proteins - genetics Proteins - metabolism Regulation Regulatory-Associated Protein of mTOR RNA Interference Threonine TOR protein TOR Serine-Threonine Kinases Transfection Tuberous Sclerosis Complex 2 Yeast |
title | The association of AMPK with ULK1 regulates autophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20association%20of%20AMPK%20with%20ULK1%20regulates%20autophagy&rft.jtitle=PloS%20one&rft.au=Lee,%20Jong%20Woo&rft.date=2010-11-03&rft.volume=5&rft.issue=11&rft.spage=e15394&rft.epage=e15394&rft.pages=e15394-e15394&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0015394&rft_dat=%3Cgale_plos_%3EA473838771%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1295206781&rft_id=info:pmid/21072212&rft_galeid=A473838771&rft_doaj_id=oai_doaj_org_article_aa99219b8a6b4a5e95df73c958af4993&rfr_iscdi=true |