Integrative analysis of low- and high-resolution eQTL

The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-11, Vol.5 (11), p.e13920-e13920
Hauptverfasser: Loguercio, Salvatore, Overall, Rupert W, Michaelson, Jacob J, Wiltshire, Tim, Pletcher, Mathew T, Miller, Brooke H, Walker, John R, Kempermann, Gerd, Su, Andrew I, Beyer, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e13920
container_issue 11
container_start_page e13920
container_title PloS one
container_volume 5
creator Loguercio, Salvatore
Overall, Rupert W
Michaelson, Jacob J
Wiltshire, Tim
Pletcher, Mathew T
Miller, Brooke H
Walker, John R
Kempermann, Gerd
Su, Andrew I
Beyer, Andreas
description The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on 'real life' data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) 'master regulators', but actually by a set of polymorphic genes specific to the central nervous system.
doi_str_mv 10.1371/journal.pone.0013920
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1295201452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473834858</galeid><doaj_id>oai_doaj_org_article_e1e6da615c0c494e9bd37ca5ba88ea12</doaj_id><sourcerecordid>A473834858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-cc6136813584722a4085f04caaf668b7313594676577dfcb3a9d4deee12ef4573</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBUQgJxkeJvOzdI0zSgUqUJGNxajnOSukrjYidj-_e4NJ0atAvkC1vnPOc9PvabZS8xmmMq8Ye1H0Jn2vnWdzBHCNOCoEfZKS4oyQVB9PHR-SR7FuMaIU6VEE-zE4KR4hLJ04wvuh6aYHp3AzOT9O6iizNfz1r_O0-BarZyzSoPEH079M53M_h6vXyePalNG-HFuJ9lPz5dXl98yZdXnxcX58vcigL3ubUCU6Ew5YpJQgxLXWvErDG1EKqUNGUKJqTgUla1LakpKlYBACZQMy7pWfZ6r7ttfdTjxFFjUnCCMOMkEYs9UXmz1tvgNibcaW-c_hvwodEm9M62oAGDqIzA3CLLCgZFWVFpDS-NUmDwTuvj2G0oN1BZ6Ppg2onoNNO5lW78jSaFVEgWSeDdKBD8rwFirzcuWmhb04EfolZIMcEp2g325h_y4eFGqjHp_q6rfWprd5r6nEmqKFNcJWr-AJVWBRtnkztql-KTgveTgsT0cNs3ZohRL75_-3_26ueUfXvErsC0_epgmzgF2R60wccYoL5_Y4z0ztyH19A7c-vR3Kns1fH_3Bcd3Ez_ALeP8mI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1295201452</pqid></control><display><type>article</type><title>Integrative analysis of low- and high-resolution eQTL</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Loguercio, Salvatore ; Overall, Rupert W ; Michaelson, Jacob J ; Wiltshire, Tim ; Pletcher, Mathew T ; Miller, Brooke H ; Walker, John R ; Kempermann, Gerd ; Su, Andrew I ; Beyer, Andreas</creator><contributor>Aziz, Ramy K.</contributor><creatorcontrib>Loguercio, Salvatore ; Overall, Rupert W ; Michaelson, Jacob J ; Wiltshire, Tim ; Pletcher, Mathew T ; Miller, Brooke H ; Walker, John R ; Kempermann, Gerd ; Su, Andrew I ; Beyer, Andreas ; Aziz, Ramy K.</creatorcontrib><description>The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on 'real life' data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) 'master regulators', but actually by a set of polymorphic genes specific to the central nervous system.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013920</identifier><identifier>PMID: 21085707</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Algorithms ; Analysis ; Animals ; Artificial chromosomes ; Bioinformatics ; Biotechnology ; Central nervous system ; Chromosome 1 ; Chromosome Mapping - methods ; Chromosomes, Mammalian - genetics ; Computational Biology/Systems Biology ; Computational Biology/Transcriptional Regulation ; Consistency ; Data processing ; Databases, Genetic ; Drug therapy ; Female ; Gene expression ; Gene Expression Profiling ; Gene mapping ; Genes ; Genetic diversity ; Genetic transcription ; Genetics and Genomics/Complex Traits ; Genetics and Genomics/Gene Expression ; Genetics and Genomics/Population Genetics ; Genome - genetics ; Genomes ; Genomics ; Haplotypes ; High resolution ; Hot spots ; Inbreeding ; Male ; Mapping ; Methods ; Mice ; Mice, Inbred Strains ; Population (statistical) ; Population studies ; Proteins ; Quantitative genetics ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; R&amp;D ; Recombinant ; Regulators ; Research &amp; development ; Studies ; Transcription</subject><ispartof>PloS one, 2010-11, Vol.5 (11), p.e13920-e13920</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Loguercio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Loguercio et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-cc6136813584722a4085f04caaf668b7313594676577dfcb3a9d4deee12ef4573</citedby><cites>FETCH-LOGICAL-c691t-cc6136813584722a4085f04caaf668b7313594676577dfcb3a9d4deee12ef4573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978079/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2978079/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21085707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aziz, Ramy K.</contributor><creatorcontrib>Loguercio, Salvatore</creatorcontrib><creatorcontrib>Overall, Rupert W</creatorcontrib><creatorcontrib>Michaelson, Jacob J</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>Miller, Brooke H</creatorcontrib><creatorcontrib>Walker, John R</creatorcontrib><creatorcontrib>Kempermann, Gerd</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Beyer, Andreas</creatorcontrib><title>Integrative analysis of low- and high-resolution eQTL</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on 'real life' data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) 'master regulators', but actually by a set of polymorphic genes specific to the central nervous system.</description><subject>Acids</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Animals</subject><subject>Artificial chromosomes</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Central nervous system</subject><subject>Chromosome 1</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Computational Biology/Systems Biology</subject><subject>Computational Biology/Transcriptional Regulation</subject><subject>Consistency</subject><subject>Data processing</subject><subject>Databases, Genetic</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genetic transcription</subject><subject>Genetics and Genomics/Complex Traits</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genetics and Genomics/Population Genetics</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>High resolution</subject><subject>Hot spots</subject><subject>Inbreeding</subject><subject>Male</subject><subject>Mapping</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred Strains</subject><subject>Population (statistical)</subject><subject>Population studies</subject><subject>Proteins</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>R&amp;D</subject><subject>Recombinant</subject><subject>Regulators</subject><subject>Research &amp; development</subject><subject>Studies</subject><subject>Transcription</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBUQgJxkeJvOzdI0zSgUqUJGNxajnOSukrjYidj-_e4NJ0atAvkC1vnPOc9PvabZS8xmmMq8Ye1H0Jn2vnWdzBHCNOCoEfZKS4oyQVB9PHR-SR7FuMaIU6VEE-zE4KR4hLJ04wvuh6aYHp3AzOT9O6iizNfz1r_O0-BarZyzSoPEH079M53M_h6vXyePalNG-HFuJ9lPz5dXl98yZdXnxcX58vcigL3ubUCU6Ew5YpJQgxLXWvErDG1EKqUNGUKJqTgUla1LakpKlYBACZQMy7pWfZ6r7ttfdTjxFFjUnCCMOMkEYs9UXmz1tvgNibcaW-c_hvwodEm9M62oAGDqIzA3CLLCgZFWVFpDS-NUmDwTuvj2G0oN1BZ6Ppg2onoNNO5lW78jSaFVEgWSeDdKBD8rwFirzcuWmhb04EfolZIMcEp2g325h_y4eFGqjHp_q6rfWprd5r6nEmqKFNcJWr-AJVWBRtnkztql-KTgveTgsT0cNs3ZohRL75_-3_26ueUfXvErsC0_epgmzgF2R60wccYoL5_Y4z0ztyH19A7c-vR3Kns1fH_3Bcd3Ez_ALeP8mI</recordid><startdate>20101110</startdate><enddate>20101110</enddate><creator>Loguercio, Salvatore</creator><creator>Overall, Rupert W</creator><creator>Michaelson, Jacob J</creator><creator>Wiltshire, Tim</creator><creator>Pletcher, Mathew T</creator><creator>Miller, Brooke H</creator><creator>Walker, John R</creator><creator>Kempermann, Gerd</creator><creator>Su, Andrew I</creator><creator>Beyer, Andreas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101110</creationdate><title>Integrative analysis of low- and high-resolution eQTL</title><author>Loguercio, Salvatore ; Overall, Rupert W ; Michaelson, Jacob J ; Wiltshire, Tim ; Pletcher, Mathew T ; Miller, Brooke H ; Walker, John R ; Kempermann, Gerd ; Su, Andrew I ; Beyer, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-cc6136813584722a4085f04caaf668b7313594676577dfcb3a9d4deee12ef4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acids</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Animals</topic><topic>Artificial chromosomes</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Central nervous system</topic><topic>Chromosome 1</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Computational Biology/Systems Biology</topic><topic>Computational Biology/Transcriptional Regulation</topic><topic>Consistency</topic><topic>Data processing</topic><topic>Databases, Genetic</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genetic transcription</topic><topic>Genetics and Genomics/Complex Traits</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genetics and Genomics/Population Genetics</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>High resolution</topic><topic>Hot spots</topic><topic>Inbreeding</topic><topic>Male</topic><topic>Mapping</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred Strains</topic><topic>Population (statistical)</topic><topic>Population studies</topic><topic>Proteins</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>R&amp;D</topic><topic>Recombinant</topic><topic>Regulators</topic><topic>Research &amp; development</topic><topic>Studies</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loguercio, Salvatore</creatorcontrib><creatorcontrib>Overall, Rupert W</creatorcontrib><creatorcontrib>Michaelson, Jacob J</creatorcontrib><creatorcontrib>Wiltshire, Tim</creatorcontrib><creatorcontrib>Pletcher, Mathew T</creatorcontrib><creatorcontrib>Miller, Brooke H</creatorcontrib><creatorcontrib>Walker, John R</creatorcontrib><creatorcontrib>Kempermann, Gerd</creatorcontrib><creatorcontrib>Su, Andrew I</creatorcontrib><creatorcontrib>Beyer, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loguercio, Salvatore</au><au>Overall, Rupert W</au><au>Michaelson, Jacob J</au><au>Wiltshire, Tim</au><au>Pletcher, Mathew T</au><au>Miller, Brooke H</au><au>Walker, John R</au><au>Kempermann, Gerd</au><au>Su, Andrew I</au><au>Beyer, Andreas</au><au>Aziz, Ramy K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative analysis of low- and high-resolution eQTL</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-11-10</date><risdate>2010</risdate><volume>5</volume><issue>11</issue><spage>e13920</spage><epage>e13920</epage><pages>e13920-e13920</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains (Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on 'real life' data as opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) 'master regulators', but actually by a set of polymorphic genes specific to the central nervous system.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21085707</pmid><doi>10.1371/journal.pone.0013920</doi><tpages>e13920</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-11, Vol.5 (11), p.e13920-e13920
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1295201452
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Algorithms
Analysis
Animals
Artificial chromosomes
Bioinformatics
Biotechnology
Central nervous system
Chromosome 1
Chromosome Mapping - methods
Chromosomes, Mammalian - genetics
Computational Biology/Systems Biology
Computational Biology/Transcriptional Regulation
Consistency
Data processing
Databases, Genetic
Drug therapy
Female
Gene expression
Gene Expression Profiling
Gene mapping
Genes
Genetic diversity
Genetic transcription
Genetics and Genomics/Complex Traits
Genetics and Genomics/Gene Expression
Genetics and Genomics/Population Genetics
Genome - genetics
Genomes
Genomics
Haplotypes
High resolution
Hot spots
Inbreeding
Male
Mapping
Methods
Mice
Mice, Inbred Strains
Population (statistical)
Population studies
Proteins
Quantitative genetics
Quantitative trait loci
Quantitative Trait Loci - genetics
R&D
Recombinant
Regulators
Research & development
Studies
Transcription
title Integrative analysis of low- and high-resolution eQTL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20analysis%20of%20low-%20and%20high-resolution%20eQTL&rft.jtitle=PloS%20one&rft.au=Loguercio,%20Salvatore&rft.date=2010-11-10&rft.volume=5&rft.issue=11&rft.spage=e13920&rft.epage=e13920&rft.pages=e13920-e13920&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013920&rft_dat=%3Cgale_plos_%3EA473834858%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1295201452&rft_id=info:pmid/21085707&rft_galeid=A473834858&rft_doaj_id=oai_doaj_org_article_e1e6da615c0c494e9bd37ca5ba88ea12&rfr_iscdi=true