Predicting individuals' learning success from patterns of pre-learning MRI activity
Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in t...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-01, Vol.6 (1), p.e16093-e16093 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e16093 |
---|---|
container_issue | 1 |
container_start_page | e16093 |
container_title | PloS one |
container_volume | 6 |
creator | Vo, Loan T K Walther, Dirk B Kramer, Arthur F Erickson, Kirk I Boot, Walter R Voss, Michelle W Prakash, Ruchika S Lee, Hyunkyu Fabiani, Monica Gratton, Gabriele Simons, Daniel J Sutton, Bradley P Wang, Michelle Y |
description | Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills. |
doi_str_mv | 10.1371/journal.pone.0016093 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1294793831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476907479</galeid><doaj_id>oai_doaj_org_article_690eb120f7ee4decb18c42b351d85868</doaj_id><sourcerecordid>A476907479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-bd92de3d1af95d485df4d54c2488f064776518de34ce6e0e50931cc95f67d1c13</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYqPwDxBEQmLiosVfcZIbpGkaUGloaANuLdc-aV2ldrGdiv37OTSrGrQL5Atbx895j8_xm2WvMZphWuKPa9d5K9vZ1lmYIYQ5qumT7BTXlEw5QfTp0fkkexHCGqGCVpw_z04IJpyRojzNbr970EZFY5e5sdrsjO5kG87yFqS3fTR0SkEIeePdJt_KGMHbkLsm33qYHqhvN_NcJpmdiXcvs2dN0oBXwz7Jfn6-_HHxdXp1_WV-cX41VbzGcbrQNdFANZZNXWhWFbphumCKsKpqEGdlyQtcJYIp4ICgSA1ipeqi4aXGCtNJ9navu21dEMM8gsCkZmVNK9oT8z2hnVyLrTcb6e-Ek0b8DTi_FNJHo1oQvEawwAQ1JQDToBa4UowsaIF1VVS8SlqfhmrdYgNagY1etiPR8Y01K7F0O0ERwQXrH3M2CHj3u4MQxcYEBW0rLbguiIqVjLI6fdcke_cP-XhzA7WU6f3GNi6VVb2mOGdl6qfsyUk2e4RKS8PGqOSdxqT4KOHDKCExEf7EpexCEPPbm_9nr3-N2fdH7ApkG1fBtV00zoYxyPag8i4ED81hxhiJ3voP0xC99cVg_ZT25vh_DkkPXqf35gz-Tw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294793831</pqid></control><display><type>article</type><title>Predicting individuals' learning success from patterns of pre-learning MRI activity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vo, Loan T K ; Walther, Dirk B ; Kramer, Arthur F ; Erickson, Kirk I ; Boot, Walter R ; Voss, Michelle W ; Prakash, Ruchika S ; Lee, Hyunkyu ; Fabiani, Monica ; Gratton, Gabriele ; Simons, Daniel J ; Sutton, Bradley P ; Wang, Michelle Y</creator><contributor>Lauwereyns, Jan</contributor><creatorcontrib>Vo, Loan T K ; Walther, Dirk B ; Kramer, Arthur F ; Erickson, Kirk I ; Boot, Walter R ; Voss, Michelle W ; Prakash, Ruchika S ; Lee, Hyunkyu ; Fabiani, Monica ; Gratton, Gabriele ; Simons, Daniel J ; Sutton, Bradley P ; Wang, Michelle Y ; Lauwereyns, Jan</creatorcontrib><description>Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0016093</identifier><identifier>PMID: 21264257</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Anatomy ; Animal behavior ; Basal ganglia ; Basal Ganglia - physiology ; Bioengineering ; Biology ; Brain research ; Caudate-putamen ; Cognitive ability ; Cognitive tasks ; Computer & video games ; Corpus Striatum - physiology ; Data mining ; Decision Support Techniques ; Dopamine ; Executive function ; Female ; Forecasting ; Ganglia ; Humans ; Individuality ; Learning ; Learning - physiology ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Neostriatum ; Neuroimaging ; Neurology ; Neurosciences ; NMR ; Nuclear magnetic resonance ; Pattern recognition ; Physiological aspects ; Population studies ; Predictions ; Psychomotor performance ; Scanners ; Social and Behavioral Sciences ; Substantia alba ; Substantia grisea ; Success ; Task complexity ; Teaching ; Training ; Video games ; Young Adult</subject><ispartof>PloS one, 2011-01, Vol.6 (1), p.e16093-e16093</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Vo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Vo et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-bd92de3d1af95d485df4d54c2488f064776518de34ce6e0e50931cc95f67d1c13</citedby><cites>FETCH-LOGICAL-c691t-bd92de3d1af95d485df4d54c2488f064776518de34ce6e0e50931cc95f67d1c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021541/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021541/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21264257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lauwereyns, Jan</contributor><creatorcontrib>Vo, Loan T K</creatorcontrib><creatorcontrib>Walther, Dirk B</creatorcontrib><creatorcontrib>Kramer, Arthur F</creatorcontrib><creatorcontrib>Erickson, Kirk I</creatorcontrib><creatorcontrib>Boot, Walter R</creatorcontrib><creatorcontrib>Voss, Michelle W</creatorcontrib><creatorcontrib>Prakash, Ruchika S</creatorcontrib><creatorcontrib>Lee, Hyunkyu</creatorcontrib><creatorcontrib>Fabiani, Monica</creatorcontrib><creatorcontrib>Gratton, Gabriele</creatorcontrib><creatorcontrib>Simons, Daniel J</creatorcontrib><creatorcontrib>Sutton, Bradley P</creatorcontrib><creatorcontrib>Wang, Michelle Y</creatorcontrib><title>Predicting individuals' learning success from patterns of pre-learning MRI activity</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills.</description><subject>Adolescent</subject><subject>Anatomy</subject><subject>Animal behavior</subject><subject>Basal ganglia</subject><subject>Basal Ganglia - physiology</subject><subject>Bioengineering</subject><subject>Biology</subject><subject>Brain research</subject><subject>Caudate-putamen</subject><subject>Cognitive ability</subject><subject>Cognitive tasks</subject><subject>Computer & video games</subject><subject>Corpus Striatum - physiology</subject><subject>Data mining</subject><subject>Decision Support Techniques</subject><subject>Dopamine</subject><subject>Executive function</subject><subject>Female</subject><subject>Forecasting</subject><subject>Ganglia</subject><subject>Humans</subject><subject>Individuality</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Neostriatum</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pattern recognition</subject><subject>Physiological aspects</subject><subject>Population studies</subject><subject>Predictions</subject><subject>Psychomotor performance</subject><subject>Scanners</subject><subject>Social and Behavioral Sciences</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Success</subject><subject>Task complexity</subject><subject>Teaching</subject><subject>Training</subject><subject>Video games</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYqPwDxBEQmLiosVfcZIbpGkaUGloaANuLdc-aV2ldrGdiv37OTSrGrQL5Atbx895j8_xm2WvMZphWuKPa9d5K9vZ1lmYIYQ5qumT7BTXlEw5QfTp0fkkexHCGqGCVpw_z04IJpyRojzNbr970EZFY5e5sdrsjO5kG87yFqS3fTR0SkEIeePdJt_KGMHbkLsm33qYHqhvN_NcJpmdiXcvs2dN0oBXwz7Jfn6-_HHxdXp1_WV-cX41VbzGcbrQNdFANZZNXWhWFbphumCKsKpqEGdlyQtcJYIp4ICgSA1ipeqi4aXGCtNJ9navu21dEMM8gsCkZmVNK9oT8z2hnVyLrTcb6e-Ek0b8DTi_FNJHo1oQvEawwAQ1JQDToBa4UowsaIF1VVS8SlqfhmrdYgNagY1etiPR8Y01K7F0O0ERwQXrH3M2CHj3u4MQxcYEBW0rLbguiIqVjLI6fdcke_cP-XhzA7WU6f3GNi6VVb2mOGdl6qfsyUk2e4RKS8PGqOSdxqT4KOHDKCExEf7EpexCEPPbm_9nr3-N2fdH7ApkG1fBtV00zoYxyPag8i4ED81hxhiJ3voP0xC99cVg_ZT25vh_DkkPXqf35gz-Tw</recordid><startdate>20110114</startdate><enddate>20110114</enddate><creator>Vo, Loan T K</creator><creator>Walther, Dirk B</creator><creator>Kramer, Arthur F</creator><creator>Erickson, Kirk I</creator><creator>Boot, Walter R</creator><creator>Voss, Michelle W</creator><creator>Prakash, Ruchika S</creator><creator>Lee, Hyunkyu</creator><creator>Fabiani, Monica</creator><creator>Gratton, Gabriele</creator><creator>Simons, Daniel J</creator><creator>Sutton, Bradley P</creator><creator>Wang, Michelle Y</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110114</creationdate><title>Predicting individuals' learning success from patterns of pre-learning MRI activity</title><author>Vo, Loan T K ; Walther, Dirk B ; Kramer, Arthur F ; Erickson, Kirk I ; Boot, Walter R ; Voss, Michelle W ; Prakash, Ruchika S ; Lee, Hyunkyu ; Fabiani, Monica ; Gratton, Gabriele ; Simons, Daniel J ; Sutton, Bradley P ; Wang, Michelle Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-bd92de3d1af95d485df4d54c2488f064776518de34ce6e0e50931cc95f67d1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adolescent</topic><topic>Anatomy</topic><topic>Animal behavior</topic><topic>Basal ganglia</topic><topic>Basal Ganglia - physiology</topic><topic>Bioengineering</topic><topic>Biology</topic><topic>Brain research</topic><topic>Caudate-putamen</topic><topic>Cognitive ability</topic><topic>Cognitive tasks</topic><topic>Computer & video games</topic><topic>Corpus Striatum - physiology</topic><topic>Data mining</topic><topic>Decision Support Techniques</topic><topic>Dopamine</topic><topic>Executive function</topic><topic>Female</topic><topic>Forecasting</topic><topic>Ganglia</topic><topic>Humans</topic><topic>Individuality</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Neostriatum</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pattern recognition</topic><topic>Physiological aspects</topic><topic>Population studies</topic><topic>Predictions</topic><topic>Psychomotor performance</topic><topic>Scanners</topic><topic>Social and Behavioral Sciences</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Success</topic><topic>Task complexity</topic><topic>Teaching</topic><topic>Training</topic><topic>Video games</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vo, Loan T K</creatorcontrib><creatorcontrib>Walther, Dirk B</creatorcontrib><creatorcontrib>Kramer, Arthur F</creatorcontrib><creatorcontrib>Erickson, Kirk I</creatorcontrib><creatorcontrib>Boot, Walter R</creatorcontrib><creatorcontrib>Voss, Michelle W</creatorcontrib><creatorcontrib>Prakash, Ruchika S</creatorcontrib><creatorcontrib>Lee, Hyunkyu</creatorcontrib><creatorcontrib>Fabiani, Monica</creatorcontrib><creatorcontrib>Gratton, Gabriele</creatorcontrib><creatorcontrib>Simons, Daniel J</creatorcontrib><creatorcontrib>Sutton, Bradley P</creatorcontrib><creatorcontrib>Wang, Michelle Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vo, Loan T K</au><au>Walther, Dirk B</au><au>Kramer, Arthur F</au><au>Erickson, Kirk I</au><au>Boot, Walter R</au><au>Voss, Michelle W</au><au>Prakash, Ruchika S</au><au>Lee, Hyunkyu</au><au>Fabiani, Monica</au><au>Gratton, Gabriele</au><au>Simons, Daniel J</au><au>Sutton, Bradley P</au><au>Wang, Michelle Y</au><au>Lauwereyns, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting individuals' learning success from patterns of pre-learning MRI activity</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-01-14</date><risdate>2011</risdate><volume>6</volume><issue>1</issue><spage>e16093</spage><epage>e16093</epage><pages>e16093-e16093</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Performance in most complex cognitive and psychomotor tasks improves with training, yet the extent of improvement varies among individuals. Is it possible to forecast the benefit that a person might reap from training? Several behavioral measures have been used to predict individual differences in task improvement, but their predictive power is limited. Here we show that individual differences in patterns of time-averaged T2*-weighted MRI images in the dorsal striatum recorded at the initial stage of training predict subsequent learning success in a complex video game with high accuracy. These predictions explained more than half of the variance in learning success among individuals, suggesting that individual differences in neuroanatomy or persistent physiology predict whether and to what extent people will benefit from training in a complex task. Surprisingly, predictions from white matter were highly accurate, while voxels in the gray matter of the dorsal striatum did not contain any information about future training success. Prediction accuracy was higher in the anterior than the posterior half of the dorsal striatum. The link between trainability and the time-averaged T2*-weighted signal in the dorsal striatum reaffirms the role of this part of the basal ganglia in learning and executive functions, such as task-switching and task coordination processes. The ability to predict who will benefit from training by using neuroimaging data collected in the early training phase may have far-reaching implications for the assessment of candidates for specific training programs as well as the study of populations that show deficiencies in learning new skills.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21264257</pmid><doi>10.1371/journal.pone.0016093</doi><tpages>e16093</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-01, Vol.6 (1), p.e16093-e16093 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1294793831 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adolescent Anatomy Animal behavior Basal ganglia Basal Ganglia - physiology Bioengineering Biology Brain research Caudate-putamen Cognitive ability Cognitive tasks Computer & video games Corpus Striatum - physiology Data mining Decision Support Techniques Dopamine Executive function Female Forecasting Ganglia Humans Individuality Learning Learning - physiology Magnetic Resonance Imaging Male Medical imaging Neostriatum Neuroimaging Neurology Neurosciences NMR Nuclear magnetic resonance Pattern recognition Physiological aspects Population studies Predictions Psychomotor performance Scanners Social and Behavioral Sciences Substantia alba Substantia grisea Success Task complexity Teaching Training Video games Young Adult |
title | Predicting individuals' learning success from patterns of pre-learning MRI activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A19%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20individuals'%20learning%20success%20from%20patterns%20of%20pre-learning%20MRI%20activity&rft.jtitle=PloS%20one&rft.au=Vo,%20Loan%20T%20K&rft.date=2011-01-14&rft.volume=6&rft.issue=1&rft.spage=e16093&rft.epage=e16093&rft.pages=e16093-e16093&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0016093&rft_dat=%3Cgale_plos_%3EA476907479%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294793831&rft_id=info:pmid/21264257&rft_galeid=A476907479&rft_doaj_id=oai_doaj_org_article_690eb120f7ee4decb18c42b351d85868&rfr_iscdi=true |