MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC

MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-01, Vol.6 (1), p.e16138-e16138
Hauptverfasser: Trompeter, Hans-Ingo, Abbad, Hassane, Iwaniuk, Katharina M, Hafner, Markus, Renwick, Neil, Tuschl, Thomas, Schira, Jessica, Müller, Hans Werner, Wernet, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e16138
container_issue 1
container_start_page e16138
container_title PloS one
container_volume 6
creator Trompeter, Hans-Ingo
Abbad, Hassane
Iwaniuk, Katharina M
Hafner, Markus
Renwick, Neil
Tuschl, Thomas
Schira, Jessica
Müller, Hans Werner
Wernet, Peter
description MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1)/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2)/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1)/S transition.
doi_str_mv 10.1371/journal.pone.0016138
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1294763667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476907185</galeid><doaj_id>oai_doaj_org_article_3f4338134230475e991d4880f0b3edb7</doaj_id><sourcerecordid>A476907185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-82a69f3c0cc82274181608e5d54eca3688990583625616932ccae0a97399943c3</originalsourceid><addsrcrecordid>eNqNk99q2zAUxs3YWLtubzA2wWBj0GT6Y8vSzSCEdgu0KyTrboUiy4mKI2WSXJb32ANPbtwSj8KGL2SOfufTOZ90suw1gmNESvTpxrXeyma8dVaPIUQUEfYkO0ac4BHFkDw9-D_KXoRwA2FBGKXPsyOMMCMlLY6z35dGeTf_Ngng0sxHqDy9WzGUp0Daah-EdAmkisBYoJxV2kcQHdi4qm1k1OAMn3fb5tbEHXCJ0U0D1E41GkjvdYigar2xK2B1612qGTTGarnSoDJ1rb220choUqarwfViMX2ZPatlE_Srfj3Jrs_Pvk-_ji6uvsymk4uRKhmPI4Yl5TVRUCmGcZkjhihkuqiKXCtJKGOcw4IRiguKaPJCKamh5CXhnOdEkZPs7V5327ggekODQJjnJSWUlomY7YnKyRux9WYj_U44acRdwPmVkD6a1KogdU4IQyTHBOZloTlHVc4YrOGS6GrZaX3uT2uXG12p1LaXzUB0uGPNWqzcrSAQ5znCSeBDL-Ddzzb5KjYmdGZLq10bBEcM5hiV7J8kS4VhhHBX1Lu_yMdt6KmVTJ0aW7tUoOo0xSQxHJaIFYkaP0Klr9Ibkx6Ork2KDxI-DhISE_WvuJJtCGK2mP8_e_VjyL4_YNdaNnEdXNN2bywMwXwPphkIwev64TYQFN2U3bshuikT_ZSltDeHN_mQdD9W5A_kLx1x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294763667</pqid></control><display><type>article</type><title>MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Trompeter, Hans-Ingo ; Abbad, Hassane ; Iwaniuk, Katharina M ; Hafner, Markus ; Renwick, Neil ; Tuschl, Thomas ; Schira, Jessica ; Müller, Hans Werner ; Wernet, Peter</creator><contributor>Linden, Rafael</contributor><creatorcontrib>Trompeter, Hans-Ingo ; Abbad, Hassane ; Iwaniuk, Katharina M ; Hafner, Markus ; Renwick, Neil ; Tuschl, Thomas ; Schira, Jessica ; Müller, Hans Werner ; Wernet, Peter ; Linden, Rafael</creatorcontrib><description>MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1)/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2)/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1)/S transition.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0016138</identifier><identifier>PMID: 21283765</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Apoptosis ; Biocompatibility ; Bioinformatics ; Biology ; Biomedical materials ; Cell Cycle ; Cell Differentiation ; Cell Lineage - genetics ; Cell Proliferation ; Coding ; Cord blood ; Differentiation ; DNA binding proteins ; double prime E2F1 protein ; Down-Regulation ; E2F Transcription Factors - metabolism ; E2F1 protein ; Fetal Blood - cytology ; G1 Phase - genetics ; Gene expression ; Gene regulation ; Genes ; Humans ; Infection ; Intracellular ; Kinases ; Laboratories ; Liver cancer ; MicroRNA ; MicroRNAs ; MicroRNAs - physiology ; miRNA ; Molecular biology ; Neurobiology ; Neurons ; Neurons - cytology ; Neurosciences ; Non-coding RNA ; Oral cancer ; Ovarian cancer ; Post-transcription ; protein families ; Proteins ; PTEN protein ; Regulation ; Stem cells ; Stem Cells - cytology ; Transcription (Genetics) ; Transcription factors ; Transfection</subject><ispartof>PloS one, 2011-01, Vol.6 (1), p.e16138-e16138</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Trompeter et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Trompeter et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-82a69f3c0cc82274181608e5d54eca3688990583625616932ccae0a97399943c3</citedby><cites>FETCH-LOGICAL-c789t-82a69f3c0cc82274181608e5d54eca3688990583625616932ccae0a97399943c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024412/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024412/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21283765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Linden, Rafael</contributor><creatorcontrib>Trompeter, Hans-Ingo</creatorcontrib><creatorcontrib>Abbad, Hassane</creatorcontrib><creatorcontrib>Iwaniuk, Katharina M</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Renwick, Neil</creatorcontrib><creatorcontrib>Tuschl, Thomas</creatorcontrib><creatorcontrib>Schira, Jessica</creatorcontrib><creatorcontrib>Müller, Hans Werner</creatorcontrib><creatorcontrib>Wernet, Peter</creatorcontrib><title>MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1)/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2)/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1)/S transition.</description><subject>Apoptosis</subject><subject>Biocompatibility</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical materials</subject><subject>Cell Cycle</subject><subject>Cell Differentiation</subject><subject>Cell Lineage - genetics</subject><subject>Cell Proliferation</subject><subject>Coding</subject><subject>Cord blood</subject><subject>Differentiation</subject><subject>DNA binding proteins</subject><subject>double prime E2F1 protein</subject><subject>Down-Regulation</subject><subject>E2F Transcription Factors - metabolism</subject><subject>E2F1 protein</subject><subject>Fetal Blood - cytology</subject><subject>G1 Phase - genetics</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Humans</subject><subject>Infection</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Liver cancer</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - physiology</subject><subject>miRNA</subject><subject>Molecular biology</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurosciences</subject><subject>Non-coding RNA</subject><subject>Oral cancer</subject><subject>Ovarian cancer</subject><subject>Post-transcription</subject><subject>protein families</subject><subject>Proteins</subject><subject>PTEN protein</subject><subject>Regulation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Transcription (Genetics)</subject><subject>Transcription factors</subject><subject>Transfection</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99q2zAUxs3YWLtubzA2wWBj0GT6Y8vSzSCEdgu0KyTrboUiy4mKI2WSXJb32ANPbtwSj8KGL2SOfufTOZ90suw1gmNESvTpxrXeyma8dVaPIUQUEfYkO0ac4BHFkDw9-D_KXoRwA2FBGKXPsyOMMCMlLY6z35dGeTf_Ngng0sxHqDy9WzGUp0Daah-EdAmkisBYoJxV2kcQHdi4qm1k1OAMn3fb5tbEHXCJ0U0D1E41GkjvdYigar2xK2B1612qGTTGarnSoDJ1rb220choUqarwfViMX2ZPatlE_Srfj3Jrs_Pvk-_ji6uvsymk4uRKhmPI4Yl5TVRUCmGcZkjhihkuqiKXCtJKGOcw4IRiguKaPJCKamh5CXhnOdEkZPs7V5327ggekODQJjnJSWUlomY7YnKyRux9WYj_U44acRdwPmVkD6a1KogdU4IQyTHBOZloTlHVc4YrOGS6GrZaX3uT2uXG12p1LaXzUB0uGPNWqzcrSAQ5znCSeBDL-Ddzzb5KjYmdGZLq10bBEcM5hiV7J8kS4VhhHBX1Lu_yMdt6KmVTJ0aW7tUoOo0xSQxHJaIFYkaP0Klr9Ibkx6Ork2KDxI-DhISE_WvuJJtCGK2mP8_e_VjyL4_YNdaNnEdXNN2bywMwXwPphkIwev64TYQFN2U3bshuikT_ZSltDeHN_mQdD9W5A_kLx1x</recordid><startdate>20110120</startdate><enddate>20110120</enddate><creator>Trompeter, Hans-Ingo</creator><creator>Abbad, Hassane</creator><creator>Iwaniuk, Katharina M</creator><creator>Hafner, Markus</creator><creator>Renwick, Neil</creator><creator>Tuschl, Thomas</creator><creator>Schira, Jessica</creator><creator>Müller, Hans Werner</creator><creator>Wernet, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110120</creationdate><title>MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC</title><author>Trompeter, Hans-Ingo ; Abbad, Hassane ; Iwaniuk, Katharina M ; Hafner, Markus ; Renwick, Neil ; Tuschl, Thomas ; Schira, Jessica ; Müller, Hans Werner ; Wernet, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-82a69f3c0cc82274181608e5d54eca3688990583625616932ccae0a97399943c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Apoptosis</topic><topic>Biocompatibility</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical materials</topic><topic>Cell Cycle</topic><topic>Cell Differentiation</topic><topic>Cell Lineage - genetics</topic><topic>Cell Proliferation</topic><topic>Coding</topic><topic>Cord blood</topic><topic>Differentiation</topic><topic>DNA binding proteins</topic><topic>double prime E2F1 protein</topic><topic>Down-Regulation</topic><topic>E2F Transcription Factors - metabolism</topic><topic>E2F1 protein</topic><topic>Fetal Blood - cytology</topic><topic>G1 Phase - genetics</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Humans</topic><topic>Infection</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Liver cancer</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - physiology</topic><topic>miRNA</topic><topic>Molecular biology</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurosciences</topic><topic>Non-coding RNA</topic><topic>Oral cancer</topic><topic>Ovarian cancer</topic><topic>Post-transcription</topic><topic>protein families</topic><topic>Proteins</topic><topic>PTEN protein</topic><topic>Regulation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Transcription (Genetics)</topic><topic>Transcription factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trompeter, Hans-Ingo</creatorcontrib><creatorcontrib>Abbad, Hassane</creatorcontrib><creatorcontrib>Iwaniuk, Katharina M</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Renwick, Neil</creatorcontrib><creatorcontrib>Tuschl, Thomas</creatorcontrib><creatorcontrib>Schira, Jessica</creatorcontrib><creatorcontrib>Müller, Hans Werner</creatorcontrib><creatorcontrib>Wernet, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trompeter, Hans-Ingo</au><au>Abbad, Hassane</au><au>Iwaniuk, Katharina M</au><au>Hafner, Markus</au><au>Renwick, Neil</au><au>Tuschl, Thomas</au><au>Schira, Jessica</au><au>Müller, Hans Werner</au><au>Wernet, Peter</au><au>Linden, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-01-20</date><risdate>2011</risdate><volume>6</volume><issue>1</issue><spage>e16138</spage><epage>e16138</epage><pages>e16138-e16138</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>MicroRNAs are short (∼22 nt) non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Here the functional impact of microRNAs on cell cycle arrest during neuronal lineage differentiation of unrestricted somatic stem cells from human cord blood (USSC) was analyzed. Expression profiling revealed downregulation of microRNAs miR-17, -20a, and -106b in USSC differentiated into neuronal lineage but not in USSC differentiated into osteogenic lineage. Transfection experiments followed by Ki67 immunostainings demonstrated that each of these microRNAs was able to promote proliferation of native USSC and to prevent in part cell cycle arrest during neuronal lineage differentiation of USSC. Bioinformatic target gene predictions followed by experimental target gene validations revealed that miR-17, -20a, and -106b act in a common manner by downregulating an overlapping set of target genes mostly involved in regulation and execution of G(1)/S transition. Pro-proliferative target genes cyclinD1 (CCND1) and E2F1 as well as anti-proliferative targets CDKN1A (p21), PTEN, RB1, RBL1 (p107), RBL2 (p130) were shown as common targets for miR-17, -20a, and -106b. Furthermore, these microRNAs also downregulate WEE1 which is involved in G(2)/M transition. Most strikingly, miR-17, -20a, and -106b were found to promote cell proliferation by increasing the intracellular activity of E2F transcription factors, despite the fact that miR-17, -20a, and -106b directly target the transcripts that encode for this protein family. Mir-17, -20a, and -106b downregulate a common set of pro- and anti-proliferative target genes to impact cell cycle progression of USSC and increase intracellular activity of E2F transcription factors to govern G(1)/S transition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21283765</pmid><doi>10.1371/journal.pone.0016138</doi><tpages>e16138</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-01, Vol.6 (1), p.e16138-e16138
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1294763667
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Apoptosis
Biocompatibility
Bioinformatics
Biology
Biomedical materials
Cell Cycle
Cell Differentiation
Cell Lineage - genetics
Cell Proliferation
Coding
Cord blood
Differentiation
DNA binding proteins
double prime E2F1 protein
Down-Regulation
E2F Transcription Factors - metabolism
E2F1 protein
Fetal Blood - cytology
G1 Phase - genetics
Gene expression
Gene regulation
Genes
Humans
Infection
Intracellular
Kinases
Laboratories
Liver cancer
MicroRNA
MicroRNAs
MicroRNAs - physiology
miRNA
Molecular biology
Neurobiology
Neurons
Neurons - cytology
Neurosciences
Non-coding RNA
Oral cancer
Ovarian cancer
Post-transcription
protein families
Proteins
PTEN protein
Regulation
Stem cells
Stem Cells - cytology
Transcription (Genetics)
Transcription factors
Transfection
title MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNAs%20MiR-17,%20MiR-20a,%20and%20MiR-106b%20act%20in%20concert%20to%20modulate%20E2F%20activity%20on%20cell%20cycle%20arrest%20during%20neuronal%20lineage%20differentiation%20of%20USSC&rft.jtitle=PloS%20one&rft.au=Trompeter,%20Hans-Ingo&rft.date=2011-01-20&rft.volume=6&rft.issue=1&rft.spage=e16138&rft.epage=e16138&rft.pages=e16138-e16138&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0016138&rft_dat=%3Cgale_plos_%3EA476907185%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294763667&rft_id=info:pmid/21283765&rft_galeid=A476907185&rft_doaj_id=oai_doaj_org_article_3f4338134230475e991d4880f0b3edb7&rfr_iscdi=true