The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development

Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-01, Vol.6 (1), p.e16120-e16120
Hauptverfasser: Biersmith, Bridget, Liu, Ze Cindy, Bauman, Kenneth, Geisbrecht, Erika R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e16120
container_issue 1
container_start_page e16120
container_title PloS one
container_volume 6
creator Biersmith, Bridget
Liu, Ze Cindy
Bauman, Kenneth
Geisbrecht, Erika R
description Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.
doi_str_mv 10.1371/journal.pone.0016120
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1294752192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476906884</galeid><doaj_id>oai_doaj_org_article_9bc2255bb69b4268ac11c2205fae1c3c</doaj_id><sourcerecordid>A476906884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQgLx0GI7sWO_IE3dgIpCJTZ44cGyHSd1ldghTib27XHXbGrQJJAfbJ1_9z_f-S5JniM4R2mO3m390DlZz1vvzBxCRBGGD5JjxFM8oximDw_OR8mTELYQkpRR-jg5wgizlDB2nPy83Bhwtl58Bm3ne2MdCFGwMkBZVwTQe3C--rIG0hWgHJzurXcBROqs88G3G1tLYBrVXXtnNVh8vQCFuTK1bxvj-qfJo1LWwTwb95Pk-4fzy8Wn2Wr9cbk4Xc10zng_o1AplVMKtSIFKYnkjBZaFkjnuqTaYCMzlRFVktJwyaEhLJc8wxTRrOBlnp4kL_e6be2DGOsSBMI8ywlGHEdiuScKL7ei7Wwju2vhpRU3Bt9VQna91bURXGmMCVGKchVjMKkRihZISmmQTnXUej9GG1RjCh0T7WQ9EZ3eOLsRlb8SKYxykEeBN6NA538NJvSisUGbupbO-CEIjhhMOSTwnyTLGMOYMRLJV3-R95dhpCoZM7Wu9PGBeqcpTrOcckgZyyI1v4eKqzCN1bHbShvtE4e3E4fI9OZ3X8khBLG8-Pb_7PrHlH19wG6MrPtN8PVw04RTMNuDOnZl6Ex59xsIit2w3FZD7IZFjMMS3V4c_uSd0-10pH8ARokOiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294752192</pqid></control><display><type>article</type><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R</creator><contributor>Treisman, Jessica</contributor><creatorcontrib>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R ; Treisman, Jessica</creatorcontrib><description>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0016120</identifier><identifier>PMID: 21283588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Actin ; Adaptor Proteins, Signal Transducing - metabolism ; Analysis ; Animals ; Axons ; Biology ; Biophysics ; Cadherins ; Cadherins - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell adhesion &amp; migration ; Central nervous system ; Central Nervous System - embryology ; Central Nervous System - growth &amp; development ; Cytoskeleton ; Defects ; Dock protein ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryo, Nonmammalian ; Embryogenesis ; Embryonic development ; Embryonic growth stage ; Guanine ; Guanine nucleotide exchange factor ; Guanosine triphosphatases ; Insects ; Kinases ; Morphogenesis ; mRNA ; Muscle proteins ; Mutants ; Mutation ; N-Cadherin ; Nervous system ; Protein Binding ; Proteins ; Rac protein ; RNA ; RNA, Messenger - analysis ; Signal transduction ; Signaling ; Tissues</subject><ispartof>PloS one, 2011-01, Vol.6 (1), p.e16120-e16120</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Copyright Public Library of Science Jan 2011</rights><rights>Biersmith et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</citedby><cites>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21283588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Treisman, Jessica</contributor><creatorcontrib>Biersmith, Bridget</creatorcontrib><creatorcontrib>Liu, Ze Cindy</creatorcontrib><creatorcontrib>Bauman, Kenneth</creatorcontrib><creatorcontrib>Geisbrecht, Erika R</creatorcontrib><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</description><subject>Aberration</subject><subject>Actin</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Axons</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell adhesion &amp; migration</subject><subject>Central nervous system</subject><subject>Central Nervous System - embryology</subject><subject>Central Nervous System - growth &amp; development</subject><subject>Cytoskeleton</subject><subject>Defects</subject><subject>Dock protein</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryo, Nonmammalian</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Guanosine triphosphatases</subject><subject>Insects</subject><subject>Kinases</subject><subject>Morphogenesis</subject><subject>mRNA</subject><subject>Muscle proteins</subject><subject>Mutants</subject><subject>Mutation</subject><subject>N-Cadherin</subject><subject>Nervous system</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rac protein</subject><subject>RNA</subject><subject>RNA, Messenger - analysis</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Tissues</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQgLx0GI7sWO_IE3dgIpCJTZ44cGyHSd1ldghTib27XHXbGrQJJAfbJ1_9z_f-S5JniM4R2mO3m390DlZz1vvzBxCRBGGD5JjxFM8oximDw_OR8mTELYQkpRR-jg5wgizlDB2nPy83Bhwtl58Bm3ne2MdCFGwMkBZVwTQe3C--rIG0hWgHJzurXcBROqs88G3G1tLYBrVXXtnNVh8vQCFuTK1bxvj-qfJo1LWwTwb95Pk-4fzy8Wn2Wr9cbk4Xc10zng_o1AplVMKtSIFKYnkjBZaFkjnuqTaYCMzlRFVktJwyaEhLJc8wxTRrOBlnp4kL_e6be2DGOsSBMI8ywlGHEdiuScKL7ei7Wwju2vhpRU3Bt9VQna91bURXGmMCVGKchVjMKkRihZISmmQTnXUej9GG1RjCh0T7WQ9EZ3eOLsRlb8SKYxykEeBN6NA538NJvSisUGbupbO-CEIjhhMOSTwnyTLGMOYMRLJV3-R95dhpCoZM7Wu9PGBeqcpTrOcckgZyyI1v4eKqzCN1bHbShvtE4e3E4fI9OZ3X8khBLG8-Pb_7PrHlH19wG6MrPtN8PVw04RTMNuDOnZl6Ex59xsIit2w3FZD7IZFjMMS3V4c_uSd0-10pH8ARokOiw</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Biersmith, Bridget</creator><creator>Liu, Ze Cindy</creator><creator>Bauman, Kenneth</creator><creator>Geisbrecht, Erika R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110125</creationdate><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><author>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aberration</topic><topic>Actin</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Axons</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell adhesion &amp; migration</topic><topic>Central nervous system</topic><topic>Central Nervous System - embryology</topic><topic>Central Nervous System - growth &amp; development</topic><topic>Cytoskeleton</topic><topic>Defects</topic><topic>Dock protein</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryo, Nonmammalian</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Guanosine triphosphatases</topic><topic>Insects</topic><topic>Kinases</topic><topic>Morphogenesis</topic><topic>mRNA</topic><topic>Muscle proteins</topic><topic>Mutants</topic><topic>Mutation</topic><topic>N-Cadherin</topic><topic>Nervous system</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rac protein</topic><topic>RNA</topic><topic>RNA, Messenger - analysis</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biersmith, Bridget</creatorcontrib><creatorcontrib>Liu, Ze Cindy</creatorcontrib><creatorcontrib>Bauman, Kenneth</creatorcontrib><creatorcontrib>Geisbrecht, Erika R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biersmith, Bridget</au><au>Liu, Ze Cindy</au><au>Bauman, Kenneth</au><au>Geisbrecht, Erika R</au><au>Treisman, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-01-25</date><risdate>2011</risdate><volume>6</volume><issue>1</issue><spage>e16120</spage><epage>e16120</epage><pages>e16120-e16120</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21283588</pmid><doi>10.1371/journal.pone.0016120</doi><tpages>e16120</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-01, Vol.6 (1), p.e16120-e16120
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1294752192
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aberration
Actin
Adaptor Proteins, Signal Transducing - metabolism
Analysis
Animals
Axons
Biology
Biophysics
Cadherins
Cadherins - metabolism
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell adhesion & migration
Central nervous system
Central Nervous System - embryology
Central Nervous System - growth & development
Cytoskeleton
Defects
Dock protein
Drosophila
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Embryo, Nonmammalian
Embryogenesis
Embryonic development
Embryonic growth stage
Guanine
Guanine nucleotide exchange factor
Guanosine triphosphatases
Insects
Kinases
Morphogenesis
mRNA
Muscle proteins
Mutants
Mutation
N-Cadherin
Nervous system
Protein Binding
Proteins
Rac protein
RNA
RNA, Messenger - analysis
Signal transduction
Signaling
Tissues
title The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DOCK%20protein%20sponge%20binds%20to%20ELMO%20and%20functions%20in%20Drosophila%20embryonic%20CNS%20development&rft.jtitle=PloS%20one&rft.au=Biersmith,%20Bridget&rft.date=2011-01-25&rft.volume=6&rft.issue=1&rft.spage=e16120&rft.epage=e16120&rft.pages=e16120-e16120&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0016120&rft_dat=%3Cgale_plos_%3EA476906884%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294752192&rft_id=info:pmid/21283588&rft_galeid=A476906884&rft_doaj_id=oai_doaj_org_article_9bc2255bb69b4268ac11c2205fae1c3c&rfr_iscdi=true