The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development
Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evol...
Gespeichert in:
Veröffentlicht in: | PloS one 2011-01, Vol.6 (1), p.e16120-e16120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e16120 |
---|---|
container_issue | 1 |
container_start_page | e16120 |
container_title | PloS one |
container_volume | 6 |
creator | Biersmith, Bridget Liu, Ze Cindy Bauman, Kenneth Geisbrecht, Erika R |
description | Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development. |
doi_str_mv | 10.1371/journal.pone.0016120 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1294752192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476906884</galeid><doaj_id>oai_doaj_org_article_9bc2255bb69b4268ac11c2205fae1c3c</doaj_id><sourcerecordid>A476906884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</originalsourceid><addsrcrecordid>eNqNk1Fv0zAQxyMEYmPwDRBYQgLx0GI7sWO_IE3dgIpCJTZ44cGyHSd1ldghTib27XHXbGrQJJAfbJ1_9z_f-S5JniM4R2mO3m390DlZz1vvzBxCRBGGD5JjxFM8oximDw_OR8mTELYQkpRR-jg5wgizlDB2nPy83Bhwtl58Bm3ne2MdCFGwMkBZVwTQe3C--rIG0hWgHJzurXcBROqs88G3G1tLYBrVXXtnNVh8vQCFuTK1bxvj-qfJo1LWwTwb95Pk-4fzy8Wn2Wr9cbk4Xc10zng_o1AplVMKtSIFKYnkjBZaFkjnuqTaYCMzlRFVktJwyaEhLJc8wxTRrOBlnp4kL_e6be2DGOsSBMI8ywlGHEdiuScKL7ei7Wwju2vhpRU3Bt9VQna91bURXGmMCVGKchVjMKkRihZISmmQTnXUej9GG1RjCh0T7WQ9EZ3eOLsRlb8SKYxykEeBN6NA538NJvSisUGbupbO-CEIjhhMOSTwnyTLGMOYMRLJV3-R95dhpCoZM7Wu9PGBeqcpTrOcckgZyyI1v4eKqzCN1bHbShvtE4e3E4fI9OZ3X8khBLG8-Pb_7PrHlH19wG6MrPtN8PVw04RTMNuDOnZl6Ex59xsIit2w3FZD7IZFjMMS3V4c_uSd0-10pH8ARokOiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1294752192</pqid></control><display><type>article</type><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R</creator><contributor>Treisman, Jessica</contributor><creatorcontrib>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R ; Treisman, Jessica</creatorcontrib><description>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0016120</identifier><identifier>PMID: 21283588</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aberration ; Actin ; Adaptor Proteins, Signal Transducing - metabolism ; Analysis ; Animals ; Axons ; Biology ; Biophysics ; Cadherins ; Cadherins - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell adhesion & migration ; Central nervous system ; Central Nervous System - embryology ; Central Nervous System - growth & development ; Cytoskeleton ; Defects ; Dock protein ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryo, Nonmammalian ; Embryogenesis ; Embryonic development ; Embryonic growth stage ; Guanine ; Guanine nucleotide exchange factor ; Guanosine triphosphatases ; Insects ; Kinases ; Morphogenesis ; mRNA ; Muscle proteins ; Mutants ; Mutation ; N-Cadherin ; Nervous system ; Protein Binding ; Proteins ; Rac protein ; RNA ; RNA, Messenger - analysis ; Signal transduction ; Signaling ; Tissues</subject><ispartof>PloS one, 2011-01, Vol.6 (1), p.e16120-e16120</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Copyright Public Library of Science Jan 2011</rights><rights>Biersmith et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</citedby><cites>FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026809/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026809/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21283588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Treisman, Jessica</contributor><creatorcontrib>Biersmith, Bridget</creatorcontrib><creatorcontrib>Liu, Ze Cindy</creatorcontrib><creatorcontrib>Bauman, Kenneth</creatorcontrib><creatorcontrib>Geisbrecht, Erika R</creatorcontrib><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</description><subject>Aberration</subject><subject>Actin</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Axons</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cadherins</subject><subject>Cadherins - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Central nervous system</subject><subject>Central Nervous System - embryology</subject><subject>Central Nervous System - growth & development</subject><subject>Cytoskeleton</subject><subject>Defects</subject><subject>Dock protein</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryo, Nonmammalian</subject><subject>Embryogenesis</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Guanosine triphosphatases</subject><subject>Insects</subject><subject>Kinases</subject><subject>Morphogenesis</subject><subject>mRNA</subject><subject>Muscle proteins</subject><subject>Mutants</subject><subject>Mutation</subject><subject>N-Cadherin</subject><subject>Nervous system</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Rac protein</subject><subject>RNA</subject><subject>RNA, Messenger - analysis</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Tissues</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fv0zAQxyMEYmPwDRBYQgLx0GI7sWO_IE3dgIpCJTZ44cGyHSd1ldghTib27XHXbGrQJJAfbJ1_9z_f-S5JniM4R2mO3m390DlZz1vvzBxCRBGGD5JjxFM8oximDw_OR8mTELYQkpRR-jg5wgizlDB2nPy83Bhwtl58Bm3ne2MdCFGwMkBZVwTQe3C--rIG0hWgHJzurXcBROqs88G3G1tLYBrVXXtnNVh8vQCFuTK1bxvj-qfJo1LWwTwb95Pk-4fzy8Wn2Wr9cbk4Xc10zng_o1AplVMKtSIFKYnkjBZaFkjnuqTaYCMzlRFVktJwyaEhLJc8wxTRrOBlnp4kL_e6be2DGOsSBMI8ywlGHEdiuScKL7ei7Wwju2vhpRU3Bt9VQna91bURXGmMCVGKchVjMKkRihZISmmQTnXUej9GG1RjCh0T7WQ9EZ3eOLsRlb8SKYxykEeBN6NA538NJvSisUGbupbO-CEIjhhMOSTwnyTLGMOYMRLJV3-R95dhpCoZM7Wu9PGBeqcpTrOcckgZyyI1v4eKqzCN1bHbShvtE4e3E4fI9OZ3X8khBLG8-Pb_7PrHlH19wG6MrPtN8PVw04RTMNuDOnZl6Ex59xsIit2w3FZD7IZFjMMS3V4c_uSd0-10pH8ARokOiw</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Biersmith, Bridget</creator><creator>Liu, Ze Cindy</creator><creator>Bauman, Kenneth</creator><creator>Geisbrecht, Erika R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110125</creationdate><title>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</title><author>Biersmith, Bridget ; Liu, Ze Cindy ; Bauman, Kenneth ; Geisbrecht, Erika R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-60bbb7660cb5d5f5a986dcad1c7cf6ce2ea4b45bf5fe9a90e587a9426164d9f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aberration</topic><topic>Actin</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Axons</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cadherins</topic><topic>Cadherins - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Central nervous system</topic><topic>Central Nervous System - embryology</topic><topic>Central Nervous System - growth & development</topic><topic>Cytoskeleton</topic><topic>Defects</topic><topic>Dock protein</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryo, Nonmammalian</topic><topic>Embryogenesis</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Guanosine triphosphatases</topic><topic>Insects</topic><topic>Kinases</topic><topic>Morphogenesis</topic><topic>mRNA</topic><topic>Muscle proteins</topic><topic>Mutants</topic><topic>Mutation</topic><topic>N-Cadherin</topic><topic>Nervous system</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Rac protein</topic><topic>RNA</topic><topic>RNA, Messenger - analysis</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biersmith, Bridget</creatorcontrib><creatorcontrib>Liu, Ze Cindy</creatorcontrib><creatorcontrib>Bauman, Kenneth</creatorcontrib><creatorcontrib>Geisbrecht, Erika R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biersmith, Bridget</au><au>Liu, Ze Cindy</au><au>Bauman, Kenneth</au><au>Geisbrecht, Erika R</au><au>Treisman, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-01-25</date><risdate>2011</risdate><volume>6</volume><issue>1</issue><spage>e16120</spage><epage>e16120</epage><pages>e16120-e16120</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cell morphogenesis, which requires rearrangement of the actin cytoskeleton, is essential to coordinate the development of tissues such as the musculature and nervous system during normal embryonic development. One class of signaling proteins that regulate actin cytoskeletal rearrangement is the evolutionarily conserved CDM (C. elegansCed-5, human DOCK180, DrosophilaMyoblast city, or Mbc) family of proteins, which function as unconventional guanine nucleotide exchange factors for the small GTPase Rac. This CDM-Rac protein complex is sufficient for Rac activation, but is enhanced upon the association of CDM proteins with the ELMO/Ced-12 family of proteins. We identified and characterized the role of Drosophila Sponge (Spg), the vertebrate DOCK3/DOCK4 counterpart as an ELMO-interacting protein. Our analysis shows Spg mRNA and protein is expressed in the visceral musculature and developing nervous system, suggesting a role for Spg in later embryogenesis. As maternal null mutants of spg die early in development, we utilized genetic interaction analysis to uncover the role of Spg in central nervous system (CNS) development. Consistent with its role in ELMO-dependent pathways, we found genetic interactions with spg and elmo mutants exhibited aberrant axonal defects. In addition, our data suggests Ncad may be responsible for recruiting Spg to the membrane, possibly in CNS development. Our findings not only characterize the role of a new DOCK family member, but help to further understand the role of signaling downstream of N-cadherin in neuronal development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21283588</pmid><doi>10.1371/journal.pone.0016120</doi><tpages>e16120</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2011-01, Vol.6 (1), p.e16120-e16120 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1294752192 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aberration Actin Adaptor Proteins, Signal Transducing - metabolism Analysis Animals Axons Biology Biophysics Cadherins Cadherins - metabolism Carrier Proteins - genetics Carrier Proteins - metabolism Cell adhesion & migration Central nervous system Central Nervous System - embryology Central Nervous System - growth & development Cytoskeleton Defects Dock protein Drosophila Drosophila melanogaster - embryology Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Embryo, Nonmammalian Embryogenesis Embryonic development Embryonic growth stage Guanine Guanine nucleotide exchange factor Guanosine triphosphatases Insects Kinases Morphogenesis mRNA Muscle proteins Mutants Mutation N-Cadherin Nervous system Protein Binding Proteins Rac protein RNA RNA, Messenger - analysis Signal transduction Signaling Tissues |
title | The DOCK protein sponge binds to ELMO and functions in Drosophila embryonic CNS development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20DOCK%20protein%20sponge%20binds%20to%20ELMO%20and%20functions%20in%20Drosophila%20embryonic%20CNS%20development&rft.jtitle=PloS%20one&rft.au=Biersmith,%20Bridget&rft.date=2011-01-25&rft.volume=6&rft.issue=1&rft.spage=e16120&rft.epage=e16120&rft.pages=e16120-e16120&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0016120&rft_dat=%3Cgale_plos_%3EA476906884%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1294752192&rft_id=info:pmid/21283588&rft_galeid=A476906884&rft_doaj_id=oai_doaj_org_article_9bc2255bb69b4268ac11c2205fae1c3c&rfr_iscdi=true |