Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization

Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-01, Vol.6 (1), p.e16207
Hauptverfasser: Sun, Wenyue, Chang, Steven S, Fu, Yumei, Liu, Yan, Califano, Joseph A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e16207
container_title PloS one
container_volume 6
creator Sun, Wenyue
Chang, Steven S
Fu, Yumei
Liu, Yan
Califano, Joseph A
description Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation. We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells. Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.
doi_str_mv 10.1371/journal.pone.0016207
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1293446091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_33c3e9b1df024790bfa9b299e76ae18b</doaj_id><sourcerecordid>1093414201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-f53c17cde651b1a2c271f9485bfa2fc3eb94aec1a3ce01e43affdf86e672b2163</originalsourceid><addsrcrecordid>eNp9kttuEzEQhlcIREvhDRBY4gIuSPDYe7xBQqGlEZVAAq4tr3ecODjrYHuLwiPwNrwIz4STbKsWIW5sy_PNPwf9WfYY6BR4Ba9WbvC9tNON63FKKZSMVneyY2g4m6Q3v3vjfZQ9CGFFacHrsryfHTFgNa-hOs5-zpbe9UaR2adTEj3KuMY-EtN3g8JA4hLJwrvvcUmcJr3za2mJ8-n4il5G0zu1jYm7NJJ8fPuekWHjcTHYFHL9yySjkmTAjizsVjm7DSYQ2XfkfH4Gv3-REGVrrPmxxx9m97S0AR-N90n25ez08-x8cvHh3Xz25mKiiqKOE11wBZXqsCygBckUq0A3eV20WjKtOLZNLlGB5AopYM6l1p2uSywr1jIo-Un29KC7sS6IcY1BAGt4npe0gUTMD0Tn5EpsvFlLvxVOGrH_cH4hpI9GWRScp4pNC52mLK8amppoWtY0WJUSoW6T1uux2tCusVNpu2l9t0RvR3qzFAt3KThlvKpoEng-Cnj3bcAQxdoEhdbKHt0QRJ3XNeN8T774Lwk0TQg5o7sJn_2F_nsP-YFS3oXgUV-3DVTsTHiVJXYmFKMJU9qTmyNfJ125jv8BLbbeDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1293446091</pqid></control><display><type>article</type><title>Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sun, Wenyue ; Chang, Steven S ; Fu, Yumei ; Liu, Yan ; Califano, Joseph A</creator><contributor>Means, Robert E.</contributor><creatorcontrib>Sun, Wenyue ; Chang, Steven S ; Fu, Yumei ; Liu, Yan ; Califano, Joseph A ; Means, Robert E.</creatorcontrib><description>Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation. We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells. Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0016207</identifier><identifier>PMID: 21283817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acetylcysteine ; Ascorbic acid ; Carcinoma, Squamous Cell ; Cell Line ; Cell Proliferation ; Cigarette smoke ; Cigarettes ; Data processing ; Dichloroacetic acid ; Exposure ; Glycolysis ; Head ; Head &amp; neck cancer ; Head and neck cancer ; Head and Neck Neoplasms ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit - chemistry ; Inhibitors ; Keratinocytes ; Keratinocytes - cytology ; Kinases ; Lactic acid ; Medicine ; Metabolites ; Mitochondria ; Mitochondrial DNA ; Mouth - cytology ; Mutation ; Oxygen ; Protein Serine-Threonine Kinases - genetics ; Protein Stability ; Pyruvate Dehydrogenase Acetyl-Transferring Kinase ; Pyruvic acid ; Reactive Oxygen Species ; Risk factors ; Smoke ; Smoke - adverse effects ; Smoking ; Squamous cell carcinoma ; Stabilization ; Tobacco ; Tobacco Products ; Tobacco smoke ; Up-regulation ; Up-Regulation - genetics</subject><ispartof>PloS one, 2011-01, Vol.6 (1), p.e16207</ispartof><rights>2011 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sun et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-f53c17cde651b1a2c271f9485bfa2fc3eb94aec1a3ce01e43affdf86e672b2163</citedby><cites>FETCH-LOGICAL-c558t-f53c17cde651b1a2c271f9485bfa2fc3eb94aec1a3ce01e43affdf86e672b2163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023770/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023770/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21283817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Means, Robert E.</contributor><creatorcontrib>Sun, Wenyue</creatorcontrib><creatorcontrib>Chang, Steven S</creatorcontrib><creatorcontrib>Fu, Yumei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Califano, Joseph A</creatorcontrib><title>Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation. We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells. Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.</description><subject>Acetylcysteine</subject><subject>Ascorbic acid</subject><subject>Carcinoma, Squamous Cell</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cigarette smoke</subject><subject>Cigarettes</subject><subject>Data processing</subject><subject>Dichloroacetic acid</subject><subject>Exposure</subject><subject>Glycolysis</subject><subject>Head</subject><subject>Head &amp; neck cancer</subject><subject>Head and neck cancer</subject><subject>Head and Neck Neoplasms</subject><subject>Humans</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - chemistry</subject><subject>Inhibitors</subject><subject>Keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Kinases</subject><subject>Lactic acid</subject><subject>Medicine</subject><subject>Metabolites</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mouth - cytology</subject><subject>Mutation</subject><subject>Oxygen</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Stability</subject><subject>Pyruvate Dehydrogenase Acetyl-Transferring Kinase</subject><subject>Pyruvic acid</subject><subject>Reactive Oxygen Species</subject><subject>Risk factors</subject><subject>Smoke</subject><subject>Smoke - adverse effects</subject><subject>Smoking</subject><subject>Squamous cell carcinoma</subject><subject>Stabilization</subject><subject>Tobacco</subject><subject>Tobacco Products</subject><subject>Tobacco smoke</subject><subject>Up-regulation</subject><subject>Up-Regulation - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9kttuEzEQhlcIREvhDRBY4gIuSPDYe7xBQqGlEZVAAq4tr3ecODjrYHuLwiPwNrwIz4STbKsWIW5sy_PNPwf9WfYY6BR4Ba9WbvC9tNON63FKKZSMVneyY2g4m6Q3v3vjfZQ9CGFFacHrsryfHTFgNa-hOs5-zpbe9UaR2adTEj3KuMY-EtN3g8JA4hLJwrvvcUmcJr3za2mJ8-n4il5G0zu1jYm7NJJ8fPuekWHjcTHYFHL9yySjkmTAjizsVjm7DSYQ2XfkfH4Gv3-REGVrrPmxxx9m97S0AR-N90n25ez08-x8cvHh3Xz25mKiiqKOE11wBZXqsCygBckUq0A3eV20WjKtOLZNLlGB5AopYM6l1p2uSywr1jIo-Un29KC7sS6IcY1BAGt4npe0gUTMD0Tn5EpsvFlLvxVOGrH_cH4hpI9GWRScp4pNC52mLK8amppoWtY0WJUSoW6T1uux2tCusVNpu2l9t0RvR3qzFAt3KThlvKpoEng-Cnj3bcAQxdoEhdbKHt0QRJ3XNeN8T774Lwk0TQg5o7sJn_2F_nsP-YFS3oXgUV-3DVTsTHiVJXYmFKMJU9qTmyNfJ125jv8BLbbeDQ</recordid><startdate>20110119</startdate><enddate>20110119</enddate><creator>Sun, Wenyue</creator><creator>Chang, Steven S</creator><creator>Fu, Yumei</creator><creator>Liu, Yan</creator><creator>Califano, Joseph A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7U7</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110119</creationdate><title>Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization</title><author>Sun, Wenyue ; Chang, Steven S ; Fu, Yumei ; Liu, Yan ; Califano, Joseph A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-f53c17cde651b1a2c271f9485bfa2fc3eb94aec1a3ce01e43affdf86e672b2163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylcysteine</topic><topic>Ascorbic acid</topic><topic>Carcinoma, Squamous Cell</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cigarette smoke</topic><topic>Cigarettes</topic><topic>Data processing</topic><topic>Dichloroacetic acid</topic><topic>Exposure</topic><topic>Glycolysis</topic><topic>Head</topic><topic>Head &amp; neck cancer</topic><topic>Head and neck cancer</topic><topic>Head and Neck Neoplasms</topic><topic>Humans</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - chemistry</topic><topic>Inhibitors</topic><topic>Keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Kinases</topic><topic>Lactic acid</topic><topic>Medicine</topic><topic>Metabolites</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mouth - cytology</topic><topic>Mutation</topic><topic>Oxygen</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Stability</topic><topic>Pyruvate Dehydrogenase Acetyl-Transferring Kinase</topic><topic>Pyruvic acid</topic><topic>Reactive Oxygen Species</topic><topic>Risk factors</topic><topic>Smoke</topic><topic>Smoke - adverse effects</topic><topic>Smoking</topic><topic>Squamous cell carcinoma</topic><topic>Stabilization</topic><topic>Tobacco</topic><topic>Tobacco Products</topic><topic>Tobacco smoke</topic><topic>Up-regulation</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wenyue</creatorcontrib><creatorcontrib>Chang, Steven S</creatorcontrib><creatorcontrib>Fu, Yumei</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Califano, Joseph A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wenyue</au><au>Chang, Steven S</au><au>Fu, Yumei</au><au>Liu, Yan</au><au>Califano, Joseph A</au><au>Means, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-01-19</date><risdate>2011</risdate><volume>6</volume><issue>1</issue><spage>e16207</spage><pages>e16207-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Exposure to cigarette smoke is a major risk factor for head and neck squamous cell carcinoma (HNSCC). We have previously established a chronic cigarette smoke extract (CSE)-treated human oral normal keratinocyte model, demonstrating an elevated frequency of mitochondrial mutations in CSE treated cells. Using this model we further characterized the mechanism by which chronic CSE treatment induces increased cellular proliferation. We demonstrate that chronic CSE treatment upregulates PDK2 expression, decreases PDH activity and thereby increases the glycolytic metabolites pyruvate and lactate. We also found that the chronic CSE treatment enhanced HIF1α accumulation through increased pyruvate and lactate production in a manner selectively reversible by ascorbate. Use of a HIF1α small molecule inhibitor blocked the growth induced by chronic CSE treatment in OKF6 cells. Furthermore, chronic CSE treatment was found to increase ROS (reactive oxygen species) production, and application of the ROS scavengers N-acetylcysteine abrogated the expression of PDK2 and HIF1α. Notably, treatment with dichloroacetate, a PDK2 inhibitor, also decreased the HIF1α expression as well as cell proliferation in chronic CSE treated OKF6 cells. Our findings suggest that chronic CSE treatment contribute to cell growth via increased ROS production through mitochondrial mutations, upregulation of PDK2, attenuating PDH activity thereby increasing glycolytic metabolites, resulting in HIF1α stabilization. This study suggests a role for chronic tobacco exposure in the development of aerobic glycolysis and normoxic HIFα activation as a part of HNSCC initiation. These data may provide insights into development of chemopreventive strategies for smoking related cancers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21283817</pmid><doi>10.1371/journal.pone.0016207</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-01, Vol.6 (1), p.e16207
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1293446091
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acetylcysteine
Ascorbic acid
Carcinoma, Squamous Cell
Cell Line
Cell Proliferation
Cigarette smoke
Cigarettes
Data processing
Dichloroacetic acid
Exposure
Glycolysis
Head
Head & neck cancer
Head and neck cancer
Head and Neck Neoplasms
Humans
Hypoxia-Inducible Factor 1, alpha Subunit - chemistry
Inhibitors
Keratinocytes
Keratinocytes - cytology
Kinases
Lactic acid
Medicine
Metabolites
Mitochondria
Mitochondrial DNA
Mouth - cytology
Mutation
Oxygen
Protein Serine-Threonine Kinases - genetics
Protein Stability
Pyruvate Dehydrogenase Acetyl-Transferring Kinase
Pyruvic acid
Reactive Oxygen Species
Risk factors
Smoke
Smoke - adverse effects
Smoking
Squamous cell carcinoma
Stabilization
Tobacco
Tobacco Products
Tobacco smoke
Up-regulation
Up-Regulation - genetics
title Chronic CSE treatment induces the growth of normal oral keratinocytes via PDK2 upregulation, increased glycolysis and HIF1α stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20CSE%20treatment%20induces%20the%20growth%20of%20normal%20oral%20keratinocytes%20via%20PDK2%20upregulation,%20increased%20glycolysis%20and%20HIF1%CE%B1%20stabilization&rft.jtitle=PloS%20one&rft.au=Sun,%20Wenyue&rft.date=2011-01-19&rft.volume=6&rft.issue=1&rft.spage=e16207&rft.pages=e16207-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0016207&rft_dat=%3Cproquest_plos_%3E1093414201%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1293446091&rft_id=info:pmid/21283817&rft_doaj_id=oai_doaj_org_article_33c3e9b1df024790bfa9b299e76ae18b&rfr_iscdi=true