The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells

Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-03, Vol.6 (3), p.e17957-e17957
Hauptverfasser: Ungerbäck, Jonas, Elander, Nils, Grünberg, John, Sigvardsson, Mikael, Söderkvist, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e17957
container_issue 3
container_start_page e17957
container_title PloS one
container_volume 6
creator Ungerbäck, Jonas
Elander, Nils
Grünberg, John
Sigvardsson, Mikael
Söderkvist, Peter
description Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA) studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt)-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+) mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.
doi_str_mv 10.1371/journal.pone.0017957
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292884895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476900169</galeid><doaj_id>oai_doaj_org_article_55acb1644f1e4a1dbd62a02c2f9ff372</doaj_id><sourcerecordid>A476900169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c760t-bf50c9a7b6468a99ea22e65223e3c6c8987a8c4bac5d5e1abc486eda3691fdeb3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQRHcNR8zmeRGWOrXQrFQa70MmcyZ2ZTsZE0yav-92e607EhByUVC8rxvwntysuwpRnNMK_z20g2-V3a-cT3MEcKVKKt72SEWlMwYQfT-3vogexTCJUIl5Yw9zA4ILmhFSnyYnZ2vIP_iol7NSN5BD7kJuYdusCpCk9dX-fc-5sF06SrTd7npcz3YOPh0qJ11HnRUNteq1-BzDdaGx9mDVtkAT8b5KPv28cP58efZyemn5fHiZKYrhuKsbkukhapqVjCuhABFCLCSEApUM80FrxTXRa102ZSAVa0LzqBRlAncNlDTo-z5zndjXZBjHEFiIgjnBRdlIpY7onHqUm68WSt_JZ0y8nrD-U4qH422IMtS6RqzomgxFAo3dcOIQkSTVrRtyip5vdl5hV-wGeqJ23tzsbh2s2aQrMLl9up34-OGeg2Nhj56ZSeq6UlvVrJzPyVFDAmMksGr0cC7HwOEKNcmbPNVPbghSJ5qW9FKFP8mS15xVGCcyBd_kXenNlKdSsGYvnXpgXrrKRdFxUT6a0wkan4HlUYDa6PTn2xN2p8IXk8EiYnwO3ZqCEEuv579P3t6MWVf7rErUDaugrNDNK4PU7DYgdq7EDy0t9XASG5b6iYNuW0pObZUkj3br-St6KaH6B8JDBub</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292884895</pqid></control><display><type>article</type><title>The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Ungerbäck, Jonas ; Elander, Nils ; Grünberg, John ; Sigvardsson, Mikael ; Söderkvist, Peter</creator><creatorcontrib>Ungerbäck, Jonas ; Elander, Nils ; Grünberg, John ; Sigvardsson, Mikael ; Söderkvist, Peter</creatorcontrib><description>Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA) studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt)-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+) mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0017957</identifier><identifier>PMID: 21437251</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoma ; Adenoma - genetics ; Adenomatous polyposis coli ; Analysis ; Animals ; Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; beta Catenin - metabolism ; Binding Sites ; Biology ; Cancer ; Cancer genetics ; Cell growth ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Computational Biology ; Crosstalk ; Electrophoretic mobility ; Epithelial cells ; Gastrointestinal diseases ; Gene expression ; Gene Expression Regulation, Neoplastic ; Gene regulation ; Genes ; Genetic aspects ; HCT116 Cells ; Health sciences ; Heparan sulfate ; Homeostasis ; HT29 Cells ; Humans ; Intestine ; Kinases ; LEF protein ; Ligands ; Luciferases - genetics ; Lymphoid Enhancer-Binding Factor 1 - metabolism ; Mammals ; MEDICIN ; MEDICINE ; Mice ; Molecular Sequence Data ; Mucosa ; Notch protein ; Promoter Regions, Genetic - genetics ; Promoters ; Protein Binding ; Proteins ; Receptor, Notch2 - genetics ; Receptor, Notch2 - metabolism ; RNA ; Signal transduction ; Signal Transduction - genetics ; Signaling ; Transcription ; Transcription (Genetics) ; Transcription Factor 4 ; Transcription factors ; Transcription Factors - metabolism ; Transcriptional Activation - genetics ; Transfection ; Tumorigenesis ; Tumors ; Wnt protein ; Wnt Proteins - metabolism ; β-Catenin</subject><ispartof>PloS one, 2011-03, Vol.6 (3), p.e17957-e17957</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>Copyright Public Library of Science Mar 2011</rights><rights>Ungerbäck et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c760t-bf50c9a7b6468a99ea22e65223e3c6c8987a8c4bac5d5e1abc486eda3691fdeb3</citedby><cites>FETCH-LOGICAL-c760t-bf50c9a7b6468a99ea22e65223e3c6c8987a8c4bac5d5e1abc486eda3691fdeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060910/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060910/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21437251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-67155$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ungerbäck, Jonas</creatorcontrib><creatorcontrib>Elander, Nils</creatorcontrib><creatorcontrib>Grünberg, John</creatorcontrib><creatorcontrib>Sigvardsson, Mikael</creatorcontrib><creatorcontrib>Söderkvist, Peter</creatorcontrib><title>The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA) studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt)-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+) mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.</description><subject>Adenoma</subject><subject>Adenoma - genetics</subject><subject>Adenomatous polyposis coli</subject><subject>Analysis</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>beta Catenin - metabolism</subject><subject>Binding Sites</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cancer genetics</subject><subject>Cell growth</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Computational Biology</subject><subject>Crosstalk</subject><subject>Electrophoretic mobility</subject><subject>Epithelial cells</subject><subject>Gastrointestinal diseases</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>HCT116 Cells</subject><subject>Health sciences</subject><subject>Heparan sulfate</subject><subject>Homeostasis</subject><subject>HT29 Cells</subject><subject>Humans</subject><subject>Intestine</subject><subject>Kinases</subject><subject>LEF protein</subject><subject>Ligands</subject><subject>Luciferases - genetics</subject><subject>Lymphoid Enhancer-Binding Factor 1 - metabolism</subject><subject>Mammals</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mucosa</subject><subject>Notch protein</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptor, Notch2 - genetics</subject><subject>Receptor, Notch2 - metabolism</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signaling</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcription Factor 4</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Activation - genetics</subject><subject>Transfection</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Wnt protein</subject><subject>Wnt Proteins - metabolism</subject><subject>β-Catenin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQRHcNR8zmeRGWOrXQrFQa70MmcyZ2ZTsZE0yav-92e607EhByUVC8rxvwntysuwpRnNMK_z20g2-V3a-cT3MEcKVKKt72SEWlMwYQfT-3vogexTCJUIl5Yw9zA4ILmhFSnyYnZ2vIP_iol7NSN5BD7kJuYdusCpCk9dX-fc-5sF06SrTd7npcz3YOPh0qJ11HnRUNteq1-BzDdaGx9mDVtkAT8b5KPv28cP58efZyemn5fHiZKYrhuKsbkukhapqVjCuhABFCLCSEApUM80FrxTXRa102ZSAVa0LzqBRlAncNlDTo-z5zndjXZBjHEFiIgjnBRdlIpY7onHqUm68WSt_JZ0y8nrD-U4qH422IMtS6RqzomgxFAo3dcOIQkSTVrRtyip5vdl5hV-wGeqJ23tzsbh2s2aQrMLl9up34-OGeg2Nhj56ZSeq6UlvVrJzPyVFDAmMksGr0cC7HwOEKNcmbPNVPbghSJ5qW9FKFP8mS15xVGCcyBd_kXenNlKdSsGYvnXpgXrrKRdFxUT6a0wkan4HlUYDa6PTn2xN2p8IXk8EiYnwO3ZqCEEuv579P3t6MWVf7rErUDaugrNDNK4PU7DYgdq7EDy0t9XASG5b6iYNuW0pObZUkj3br-St6KaH6B8JDBub</recordid><startdate>20110318</startdate><enddate>20110318</enddate><creator>Ungerbäck, Jonas</creator><creator>Elander, Nils</creator><creator>Grünberg, John</creator><creator>Sigvardsson, Mikael</creator><creator>Söderkvist, Peter</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>DOA</scope></search><sort><creationdate>20110318</creationdate><title>The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells</title><author>Ungerbäck, Jonas ; Elander, Nils ; Grünberg, John ; Sigvardsson, Mikael ; Söderkvist, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c760t-bf50c9a7b6468a99ea22e65223e3c6c8987a8c4bac5d5e1abc486eda3691fdeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenoma</topic><topic>Adenoma - genetics</topic><topic>Adenomatous polyposis coli</topic><topic>Analysis</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>beta Catenin - metabolism</topic><topic>Binding Sites</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cancer genetics</topic><topic>Cell growth</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Computational Biology</topic><topic>Crosstalk</topic><topic>Electrophoretic mobility</topic><topic>Epithelial cells</topic><topic>Gastrointestinal diseases</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>HCT116 Cells</topic><topic>Health sciences</topic><topic>Heparan sulfate</topic><topic>Homeostasis</topic><topic>HT29 Cells</topic><topic>Humans</topic><topic>Intestine</topic><topic>Kinases</topic><topic>LEF protein</topic><topic>Ligands</topic><topic>Luciferases - genetics</topic><topic>Lymphoid Enhancer-Binding Factor 1 - metabolism</topic><topic>Mammals</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mucosa</topic><topic>Notch protein</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptor, Notch2 - genetics</topic><topic>Receptor, Notch2 - metabolism</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signaling</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcription Factor 4</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Activation - genetics</topic><topic>Transfection</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Wnt protein</topic><topic>Wnt Proteins - metabolism</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ungerbäck, Jonas</creatorcontrib><creatorcontrib>Elander, Nils</creatorcontrib><creatorcontrib>Grünberg, John</creatorcontrib><creatorcontrib>Sigvardsson, Mikael</creatorcontrib><creatorcontrib>Söderkvist, Peter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ungerbäck, Jonas</au><au>Elander, Nils</au><au>Grünberg, John</au><au>Sigvardsson, Mikael</au><au>Söderkvist, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-03-18</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>e17957</spage><epage>e17957</epage><pages>e17957-e17957</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Notch and Wnt pathways are key regulators of intestinal homeostasis and alterations in these pathways may lead to the development of colorectal cancer (CRC). In CRC the Apc/β-catenin genes in the Wnt signaling pathway are frequently mutated and active Notch signaling contributes to tumorigenesis by keeping the epithelial cells in a proliferative state. These pathways are simultaneously active in proliferative adenoma cells and a crosstalk between them has previously been suggested in normal development as well as in cancer. In this study, in silico analysis of putative promoters involved in transcriptional regulation of genes coding for proteins in the Notch signaling pathway revealed several putative LEF-1/TCF sites as potential targets for β-catenin and canonical Wnt signaling. Further results from competitive electrophoretic mobility-shift assay (EMSA) studies suggest binding of several putative sites in Notch pathway gene promoters to in vitro translated β-catenin/Lef-1. Wild type (wt)-Apc negatively regulates β-catenin. By induction of wt-Apc or β-catenin silencing in HT29 cells, we observed that several genes in the Notch pathway, including Notch-2, were downregulated. Finally, active Notch signaling was verified in the Apc(Min/+) mouse model where Hes-1 mRNA levels were found significantly upregulated in intestinal tumors compared to normal intestinal mucosa. Luciferase assays showed an increased activity for the core and proximal Notch-2 promoter upon co-transfection of HCT116 cells with high expression recombinant Tcf-4, Lef-1 or β-catenin. In this paper, we identified Notch-2 as a novel target for β-catenin-dependent Wnt signaling. Furthermore our data supports the notion that additional genes in the Notch pathway might be transcriptionally regulated by Wnt signaling in colorectal cancer.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21437251</pmid><doi>10.1371/journal.pone.0017957</doi><tpages>e17957</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-03, Vol.6 (3), p.e17957-e17957
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292884895
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SWEPUB Freely available online; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adenoma
Adenoma - genetics
Adenomatous polyposis coli
Analysis
Animals
Base Sequence
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
beta Catenin - metabolism
Binding Sites
Biology
Cancer
Cancer genetics
Cell growth
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - genetics
Computational Biology
Crosstalk
Electrophoretic mobility
Epithelial cells
Gastrointestinal diseases
Gene expression
Gene Expression Regulation, Neoplastic
Gene regulation
Genes
Genetic aspects
HCT116 Cells
Health sciences
Heparan sulfate
Homeostasis
HT29 Cells
Humans
Intestine
Kinases
LEF protein
Ligands
Luciferases - genetics
Lymphoid Enhancer-Binding Factor 1 - metabolism
Mammals
MEDICIN
MEDICINE
Mice
Molecular Sequence Data
Mucosa
Notch protein
Promoter Regions, Genetic - genetics
Promoters
Protein Binding
Proteins
Receptor, Notch2 - genetics
Receptor, Notch2 - metabolism
RNA
Signal transduction
Signal Transduction - genetics
Signaling
Transcription
Transcription (Genetics)
Transcription Factor 4
Transcription factors
Transcription Factors - metabolism
Transcriptional Activation - genetics
Transfection
Tumorigenesis
Tumors
Wnt protein
Wnt Proteins - metabolism
β-Catenin
title The Notch-2 gene is regulated by Wnt signaling in cultured colorectal cancer cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Notch-2%20gene%20is%20regulated%20by%20Wnt%20signaling%20in%20cultured%20colorectal%20cancer%20cells&rft.jtitle=PloS%20one&rft.au=Ungerb%C3%A4ck,%20Jonas&rft.date=2011-03-18&rft.volume=6&rft.issue=3&rft.spage=e17957&rft.epage=e17957&rft.pages=e17957-e17957&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0017957&rft_dat=%3Cgale_plos_%3EA476900169%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292884895&rft_id=info:pmid/21437251&rft_galeid=A476900169&rft_doaj_id=oai_doaj_org_article_55acb1644f1e4a1dbd62a02c2f9ff372&rfr_iscdi=true