Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-03, Vol.6 (3), p.e18090-e18090
Hauptverfasser: Jespersen, Jakob G, Nedergaard, Anders, Reitelseder, Søren, Mikkelsen, Ulla R, Dideriksen, Kasper J, Agergaard, Jakob, Kreiner, Frederik, Pott, Frank C, Schjerling, Peter, Kjaer, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e18090
container_issue 3
container_start_page e18090
container_title PloS one
container_volume 6
creator Jespersen, Jakob G
Nedergaard, Anders
Reitelseder, Søren
Mikkelsen, Ulla R
Dideriksen, Kasper J
Agergaard, Jakob
Kreiner, Frederik
Pott, Frank C
Schjerling, Peter
Kjaer, Michael
description Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p
doi_str_mv 10.1371/journal.pone.0018090
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292654898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476898821</galeid><doaj_id>oai_doaj_org_article_147a6d87fae8421d9bcc0d906c3d0522</doaj_id><sourcerecordid>A476898821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c691t-f656fe82b82429da7344fb8ce8abf5b269fd8824c0f4c1c8a7a51b539eb498273</originalsourceid><addsrcrecordid>eNqNk12P1CAUhhujcdfVf2C0iYnGixmBthRuTCYbPybZZBO_bgmF0w67TKlAV-ffyzjdzdTsheECAs_7Hs6Bk2XPMVriosbvrtzoe2mXg-thiRBmiKMH2SnmBVlQgoqHR-uT7EkIVwhVBaP0cXZCcMkKVqPTLK5UNDcygs4H7yKYPg-7Pm4gmJDLXudhHAYPIRwBjQd5rd2vhJouXcH0Xb7XXYOFKG2-HYOykLs2V95Eo6S1u9xYmw8yGuhjeJo9aqUN8Gyaz7LvHz98O_-8uLj8tD5fXSwU5TguWlrRFhhpGCkJ17IuyrJtmAImm7ZqCOWtZulMobZUWDFZywo3VcGhKTkjdXGWvTz4DtYFMRUsCEw4oVXJOEvE-kBoJ6_E4M1W-p1w0oi_G853QvqUggWBy1pSzepWAisJ1rxRCmmOqCo0qghJXu-naGOzBa1Spl7amen8pDcb0bkbUSDKUYWSwZvJwLufI4QotiYosFb24MYgGMU1JzXGiXz1D3l_chPVyXR_07cuhVV7T7Eqa5oQRvZey3uoNDRsjUqfqzVpfyZ4OxMkJsLv2MkxBLH--uX_2csfc_b1EbsBaeMmODtG4_owB8sDqLwLwUN7V2OMxL43bqsh9r0hpt5IshfH73Mnum2G4g-aWwwd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292654898</pqid></control><display><type>article</type><title>Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jespersen, Jakob G ; Nedergaard, Anders ; Reitelseder, Søren ; Mikkelsen, Ulla R ; Dideriksen, Kasper J ; Agergaard, Jakob ; Kreiner, Frederik ; Pott, Frank C ; Schjerling, Peter ; Kjaer, Michael</creator><contributor>Agarwal, Sudha</contributor><creatorcontrib>Jespersen, Jakob G ; Nedergaard, Anders ; Reitelseder, Søren ; Mikkelsen, Ulla R ; Dideriksen, Kasper J ; Agergaard, Jakob ; Kreiner, Frederik ; Pott, Frank C ; Schjerling, Peter ; Kjaer, Michael ; Agarwal, Sudha</creatorcontrib><description>Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p&lt;0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0018090</identifier><identifier>PMID: 21483870</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Aging ; AKT protein ; Alcohol ; Amino acids ; Biology ; Blotting, Western ; Bone surgery ; Branched chain amino acids ; Breakdown ; Care and treatment ; Case-Control Studies ; Cell cycle ; Chain branching ; Comparative analysis ; Critical Illness ; Diabetes ; Diabetes therapy ; Dietary fiber ; Electrolytes ; Female ; Forkhead protein ; FOXO1 protein ; FOXO3 protein ; Gene expression ; Glucose ; Glycogen ; Glycogen synthase kinase 3 ; Glycogen synthesis ; Hospital patients ; Hospitals ; Humans ; Illnesses ; Inflammation ; Insulin ; Insulin-like growth factor I ; Insulin-like growth factors ; Interleukin ; Interleukin 6 ; Interleukins ; Kinases ; Male ; Medicine ; Metabolism ; Middle Aged ; Mortality ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myostatin ; Orthopedics ; Pathways ; Patients ; Phosphates ; Phosphorylation ; Polymerase chain reaction ; Protein binding ; Protein Biosynthesis ; Protein synthesis ; Protein turnover ; Proteins ; Proteolysis ; Rapamycin ; Reverse Transcriptase Polymerase Chain Reaction ; Ribosomal protein S6 ; Ribosomal protein S6 kinase ; RNA ; Rodents ; Sepsis ; Signal transduction ; Signal Transduction - genetics ; Signal Transduction - physiology ; Signaling ; Skeletal muscle ; Thigh ; TOR protein ; Translation (Genetics) ; Type 2 diabetes ; Western blotting</subject><ispartof>PloS one, 2011-03, Vol.6 (3), p.e18090-e18090</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Jespersen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jespersen et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c691t-f656fe82b82429da7344fb8ce8abf5b269fd8824c0f4c1c8a7a51b539eb498273</citedby><cites>FETCH-LOGICAL-c691t-f656fe82b82429da7344fb8ce8abf5b269fd8824c0f4c1c8a7a51b539eb498273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069050/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069050/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21483870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Agarwal, Sudha</contributor><creatorcontrib>Jespersen, Jakob G</creatorcontrib><creatorcontrib>Nedergaard, Anders</creatorcontrib><creatorcontrib>Reitelseder, Søren</creatorcontrib><creatorcontrib>Mikkelsen, Ulla R</creatorcontrib><creatorcontrib>Dideriksen, Kasper J</creatorcontrib><creatorcontrib>Agergaard, Jakob</creatorcontrib><creatorcontrib>Kreiner, Frederik</creatorcontrib><creatorcontrib>Pott, Frank C</creatorcontrib><creatorcontrib>Schjerling, Peter</creatorcontrib><creatorcontrib>Kjaer, Michael</creatorcontrib><title>Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p&lt;0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.</description><subject>Adult</subject><subject>Aged</subject><subject>Aging</subject><subject>AKT protein</subject><subject>Alcohol</subject><subject>Amino acids</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Bone surgery</subject><subject>Branched chain amino acids</subject><subject>Breakdown</subject><subject>Care and treatment</subject><subject>Case-Control Studies</subject><subject>Cell cycle</subject><subject>Chain branching</subject><subject>Comparative analysis</subject><subject>Critical Illness</subject><subject>Diabetes</subject><subject>Diabetes therapy</subject><subject>Dietary fiber</subject><subject>Electrolytes</subject><subject>Female</subject><subject>Forkhead protein</subject><subject>FOXO1 protein</subject><subject>FOXO3 protein</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Glycogen</subject><subject>Glycogen synthase kinase 3</subject><subject>Glycogen synthesis</subject><subject>Hospital patients</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Illnesses</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-like growth factors</subject><subject>Interleukin</subject><subject>Interleukin 6</subject><subject>Interleukins</subject><subject>Kinases</subject><subject>Male</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Middle Aged</subject><subject>Mortality</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myostatin</subject><subject>Orthopedics</subject><subject>Pathways</subject><subject>Patients</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>Polymerase chain reaction</subject><subject>Protein binding</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Rapamycin</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribosomal protein S6</subject><subject>Ribosomal protein S6 kinase</subject><subject>RNA</subject><subject>Rodents</subject><subject>Sepsis</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Signaling</subject><subject>Skeletal muscle</subject><subject>Thigh</subject><subject>TOR protein</subject><subject>Translation (Genetics)</subject><subject>Type 2 diabetes</subject><subject>Western blotting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12P1CAUhhujcdfVf2C0iYnGixmBthRuTCYbPybZZBO_bgmF0w67TKlAV-ffyzjdzdTsheECAs_7Hs6Bk2XPMVriosbvrtzoe2mXg-thiRBmiKMH2SnmBVlQgoqHR-uT7EkIVwhVBaP0cXZCcMkKVqPTLK5UNDcygs4H7yKYPg-7Pm4gmJDLXudhHAYPIRwBjQd5rd2vhJouXcH0Xb7XXYOFKG2-HYOykLs2V95Eo6S1u9xYmw8yGuhjeJo9aqUN8Gyaz7LvHz98O_-8uLj8tD5fXSwU5TguWlrRFhhpGCkJ17IuyrJtmAImm7ZqCOWtZulMobZUWDFZywo3VcGhKTkjdXGWvTz4DtYFMRUsCEw4oVXJOEvE-kBoJ6_E4M1W-p1w0oi_G853QvqUggWBy1pSzepWAisJ1rxRCmmOqCo0qghJXu-naGOzBa1Spl7amen8pDcb0bkbUSDKUYWSwZvJwLufI4QotiYosFb24MYgGMU1JzXGiXz1D3l_chPVyXR_07cuhVV7T7Eqa5oQRvZey3uoNDRsjUqfqzVpfyZ4OxMkJsLv2MkxBLH--uX_2csfc_b1EbsBaeMmODtG4_owB8sDqLwLwUN7V2OMxL43bqsh9r0hpt5IshfH73Mnum2G4g-aWwwd</recordid><startdate>20110331</startdate><enddate>20110331</enddate><creator>Jespersen, Jakob G</creator><creator>Nedergaard, Anders</creator><creator>Reitelseder, Søren</creator><creator>Mikkelsen, Ulla R</creator><creator>Dideriksen, Kasper J</creator><creator>Agergaard, Jakob</creator><creator>Kreiner, Frederik</creator><creator>Pott, Frank C</creator><creator>Schjerling, Peter</creator><creator>Kjaer, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110331</creationdate><title>Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients</title><author>Jespersen, Jakob G ; Nedergaard, Anders ; Reitelseder, Søren ; Mikkelsen, Ulla R ; Dideriksen, Kasper J ; Agergaard, Jakob ; Kreiner, Frederik ; Pott, Frank C ; Schjerling, Peter ; Kjaer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c691t-f656fe82b82429da7344fb8ce8abf5b269fd8824c0f4c1c8a7a51b539eb498273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aging</topic><topic>AKT protein</topic><topic>Alcohol</topic><topic>Amino acids</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Bone surgery</topic><topic>Branched chain amino acids</topic><topic>Breakdown</topic><topic>Care and treatment</topic><topic>Case-Control Studies</topic><topic>Cell cycle</topic><topic>Chain branching</topic><topic>Comparative analysis</topic><topic>Critical Illness</topic><topic>Diabetes</topic><topic>Diabetes therapy</topic><topic>Dietary fiber</topic><topic>Electrolytes</topic><topic>Female</topic><topic>Forkhead protein</topic><topic>FOXO1 protein</topic><topic>FOXO3 protein</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Glycogen</topic><topic>Glycogen synthase kinase 3</topic><topic>Glycogen synthesis</topic><topic>Hospital patients</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Illnesses</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-like growth factors</topic><topic>Interleukin</topic><topic>Interleukin 6</topic><topic>Interleukins</topic><topic>Kinases</topic><topic>Male</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Middle Aged</topic><topic>Mortality</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myostatin</topic><topic>Orthopedics</topic><topic>Pathways</topic><topic>Patients</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>Polymerase chain reaction</topic><topic>Protein binding</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Rapamycin</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribosomal protein S6</topic><topic>Ribosomal protein S6 kinase</topic><topic>RNA</topic><topic>Rodents</topic><topic>Sepsis</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Signaling</topic><topic>Skeletal muscle</topic><topic>Thigh</topic><topic>TOR protein</topic><topic>Translation (Genetics)</topic><topic>Type 2 diabetes</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jespersen, Jakob G</creatorcontrib><creatorcontrib>Nedergaard, Anders</creatorcontrib><creatorcontrib>Reitelseder, Søren</creatorcontrib><creatorcontrib>Mikkelsen, Ulla R</creatorcontrib><creatorcontrib>Dideriksen, Kasper J</creatorcontrib><creatorcontrib>Agergaard, Jakob</creatorcontrib><creatorcontrib>Kreiner, Frederik</creatorcontrib><creatorcontrib>Pott, Frank C</creatorcontrib><creatorcontrib>Schjerling, Peter</creatorcontrib><creatorcontrib>Kjaer, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jespersen, Jakob G</au><au>Nedergaard, Anders</au><au>Reitelseder, Søren</au><au>Mikkelsen, Ulla R</au><au>Dideriksen, Kasper J</au><au>Agergaard, Jakob</au><au>Kreiner, Frederik</au><au>Pott, Frank C</au><au>Schjerling, Peter</au><au>Kjaer, Michael</au><au>Agarwal, Sudha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-03-31</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>e18090</spage><epage>e18090</epage><pages>e18090-e18090</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2=0.36, p&lt;0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21483870</pmid><doi>10.1371/journal.pone.0018090</doi><tpages>e18090</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-03, Vol.6 (3), p.e18090-e18090
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292654898
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Aged
Aging
AKT protein
Alcohol
Amino acids
Biology
Blotting, Western
Bone surgery
Branched chain amino acids
Breakdown
Care and treatment
Case-Control Studies
Cell cycle
Chain branching
Comparative analysis
Critical Illness
Diabetes
Diabetes therapy
Dietary fiber
Electrolytes
Female
Forkhead protein
FOXO1 protein
FOXO3 protein
Gene expression
Glucose
Glycogen
Glycogen synthase kinase 3
Glycogen synthesis
Hospital patients
Hospitals
Humans
Illnesses
Inflammation
Insulin
Insulin-like growth factor I
Insulin-like growth factors
Interleukin
Interleukin 6
Interleukins
Kinases
Male
Medicine
Metabolism
Middle Aged
Mortality
Muscle Proteins - genetics
Muscle Proteins - metabolism
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Myostatin
Orthopedics
Pathways
Patients
Phosphates
Phosphorylation
Polymerase chain reaction
Protein binding
Protein Biosynthesis
Protein synthesis
Protein turnover
Proteins
Proteolysis
Rapamycin
Reverse Transcriptase Polymerase Chain Reaction
Ribosomal protein S6
Ribosomal protein S6 kinase
RNA
Rodents
Sepsis
Signal transduction
Signal Transduction - genetics
Signal Transduction - physiology
Signaling
Skeletal muscle
Thigh
TOR protein
Translation (Genetics)
Type 2 diabetes
Western blotting
title Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A13%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activated%20protein%20synthesis%20and%20suppressed%20protein%20breakdown%20signaling%20in%20skeletal%20muscle%20of%20critically%20ill%20patients&rft.jtitle=PloS%20one&rft.au=Jespersen,%20Jakob%20G&rft.date=2011-03-31&rft.volume=6&rft.issue=3&rft.spage=e18090&rft.epage=e18090&rft.pages=e18090-e18090&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0018090&rft_dat=%3Cgale_plos_%3EA476898821%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292654898&rft_id=info:pmid/21483870&rft_galeid=A476898821&rft_doaj_id=oai_doaj_org_article_147a6d87fae8421d9bcc0d906c3d0522&rfr_iscdi=true