Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels

The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single membe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-05, Vol.5 (5), p.e10519
Hauptverfasser: Hofmann, Thomas, Chubanov, Vladimir, Chen, Xiaodi, Dietz, Anna S, Gudermann, Thomas, Montell, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e10519
container_title PloS one
container_volume 5
creator Hofmann, Thomas
Chubanov, Vladimir
Chen, Xiaodi
Dietz, Anna S
Gudermann, Thomas
Montell, Craig
description The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.
doi_str_mv 10.1371/journal.pone.0010519
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292582611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473896895</galeid><doaj_id>oai_doaj_org_article_8eb670bf28314eb6bc93d52c2c310055</doaj_id><sourcerecordid>A473896895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c715t-92ecff556a536b8b16820a9800445f80c311019b07e698f0471d5dc40af85f5a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLguDFjPlo0uRGWMZRB2ZZ2a_bkKZJmyXTjEm7rP_ejNNdp6AguUg4ec7Jy5s3y15DMIe4hB9v_RA66eZb3-k5ABAQyJ9kx5BjNKMI4KcH56PsRYy3ABDMKH2eHSFQUMw4P85uPgcf_ba1TuZXF9_P8kUru067fBXzZYy66610ufEh71udL3zXB-9yb_LlfR-k0s4NTob8TDadjnbY5Gt9p118mT0z0kX9atxPsusvy6vFt9n6_OtqcbqeqRKSfsaRVsYQQiXBtGIVpAwByRkARUEMAwpDCCCvQKkpZwYUJaxJrQogDSOGSHySvd3P3TofxWhJFBBxRBiiECZitSdqL2_FNtiNDD-Fl1b8LvjQCBl6q5wWTFe0BJVBDMMinSvFcU2QQklG8o6kWZ_G14Zqo2uV3AnSTYZObzrbisbfCcQoIcVOzLtxQPA_Bh37f0geqUYmVbYzfmf1xkYlTosy_RtlfCdm_hcqrVpvrEqhMDbVJw0fJg2J6fV938ghRrG6vPh_9vxmyr4_YFstXd9G74be-i5OwWIPqpS5GLR5dA4Cscv0gxtil2kxZjq1vTl0_bHpIcR_QmCkF7IJNorrSwQgBpARhDHHvwDjO_kX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292582611</pqid></control><display><type>article</type><title>Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Hofmann, Thomas ; Chubanov, Vladimir ; Chen, Xiaodi ; Dietz, Anna S ; Gudermann, Thomas ; Montell, Craig</creator><contributor>Bergmann, Andreas</contributor><creatorcontrib>Hofmann, Thomas ; Chubanov, Vladimir ; Chen, Xiaodi ; Dietz, Anna S ; Gudermann, Thomas ; Montell, Craig ; Bergmann, Andreas</creatorcontrib><description>The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0010519</identifier><identifier>PMID: 20463899</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Anopheles stephensi ; Cell Biology/Cell Signaling ; Channels ; Culicidae ; Deoxyribonucleic acid ; Developmental Biology ; Dietary supplements ; DNA ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - drug effects ; Drosophila melanogaster - metabolism ; Drosophila Proteins - metabolism ; Extracellular Space - drug effects ; Extracellular Space - metabolism ; Genetics and Genomics/Animal Genetics ; Genomics ; Hemolymph ; Homeostasis ; Hypermagnesemia ; Insects ; Kidneys ; Larva - drug effects ; Larva - growth &amp; development ; Larva - metabolism ; Lethality ; Magnesium ; Magnesium - metabolism ; Magnesium - pharmacology ; Malpighian tubules ; Malpighian Tubules - drug effects ; Malpighian Tubules - metabolism ; Malpighian Tubules - pathology ; Mammals ; Microscopy ; Mosquitoes ; Mutation ; Mutation - genetics ; Phenols ; Physiology ; Physiology/Renal, Fluid, and Electrolyte Physiology ; Plasmodium berghei ; Proteins ; Pupa - drug effects ; Pupa - growth &amp; development ; Pupa - metabolism ; Signaling ; Transient receptor potential proteins ; TRPM Cation Channels - metabolism ; Viability</subject><ispartof>PloS one, 2010-05, Vol.5 (5), p.e10519</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Hofmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Hofmann et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c715t-92ecff556a536b8b16820a9800445f80c311019b07e698f0471d5dc40af85f5a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865541/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865541/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20463899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bergmann, Andreas</contributor><creatorcontrib>Hofmann, Thomas</creatorcontrib><creatorcontrib>Chubanov, Vladimir</creatorcontrib><creatorcontrib>Chen, Xiaodi</creatorcontrib><creatorcontrib>Dietz, Anna S</creatorcontrib><creatorcontrib>Gudermann, Thomas</creatorcontrib><creatorcontrib>Montell, Craig</creatorcontrib><title>Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.</description><subject>Animals</subject><subject>Anopheles stephensi</subject><subject>Cell Biology/Cell Signaling</subject><subject>Channels</subject><subject>Culicidae</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>Dietary supplements</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - drug effects</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - metabolism</subject><subject>Extracellular Space - drug effects</subject><subject>Extracellular Space - metabolism</subject><subject>Genetics and Genomics/Animal Genetics</subject><subject>Genomics</subject><subject>Hemolymph</subject><subject>Homeostasis</subject><subject>Hypermagnesemia</subject><subject>Insects</subject><subject>Kidneys</subject><subject>Larva - drug effects</subject><subject>Larva - growth &amp; development</subject><subject>Larva - metabolism</subject><subject>Lethality</subject><subject>Magnesium</subject><subject>Magnesium - metabolism</subject><subject>Magnesium - pharmacology</subject><subject>Malpighian tubules</subject><subject>Malpighian Tubules - drug effects</subject><subject>Malpighian Tubules - metabolism</subject><subject>Malpighian Tubules - pathology</subject><subject>Mammals</subject><subject>Microscopy</subject><subject>Mosquitoes</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Phenols</subject><subject>Physiology</subject><subject>Physiology/Renal, Fluid, and Electrolyte Physiology</subject><subject>Plasmodium berghei</subject><subject>Proteins</subject><subject>Pupa - drug effects</subject><subject>Pupa - growth &amp; development</subject><subject>Pupa - metabolism</subject><subject>Signaling</subject><subject>Transient receptor potential proteins</subject><subject>TRPM Cation Channels - metabolism</subject><subject>Viability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLguDFjPlo0uRGWMZRB2ZZ2a_bkKZJmyXTjEm7rP_ejNNdp6AguUg4ec7Jy5s3y15DMIe4hB9v_RA66eZb3-k5ABAQyJ9kx5BjNKMI4KcH56PsRYy3ABDMKH2eHSFQUMw4P85uPgcf_ba1TuZXF9_P8kUru067fBXzZYy66610ufEh71udL3zXB-9yb_LlfR-k0s4NTob8TDadjnbY5Gt9p118mT0z0kX9atxPsusvy6vFt9n6_OtqcbqeqRKSfsaRVsYQQiXBtGIVpAwByRkARUEMAwpDCCCvQKkpZwYUJaxJrQogDSOGSHySvd3P3TofxWhJFBBxRBiiECZitSdqL2_FNtiNDD-Fl1b8LvjQCBl6q5wWTFe0BJVBDMMinSvFcU2QQklG8o6kWZ_G14Zqo2uV3AnSTYZObzrbisbfCcQoIcVOzLtxQPA_Bh37f0geqUYmVbYzfmf1xkYlTosy_RtlfCdm_hcqrVpvrEqhMDbVJw0fJg2J6fV938ghRrG6vPh_9vxmyr4_YFstXd9G74be-i5OwWIPqpS5GLR5dA4Cscv0gxtil2kxZjq1vTl0_bHpIcR_QmCkF7IJNorrSwQgBpARhDHHvwDjO_kX</recordid><startdate>20100506</startdate><enddate>20100506</enddate><creator>Hofmann, Thomas</creator><creator>Chubanov, Vladimir</creator><creator>Chen, Xiaodi</creator><creator>Dietz, Anna S</creator><creator>Gudermann, Thomas</creator><creator>Montell, Craig</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100506</creationdate><title>Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels</title><author>Hofmann, Thomas ; Chubanov, Vladimir ; Chen, Xiaodi ; Dietz, Anna S ; Gudermann, Thomas ; Montell, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c715t-92ecff556a536b8b16820a9800445f80c311019b07e698f0471d5dc40af85f5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Anopheles stephensi</topic><topic>Cell Biology/Cell Signaling</topic><topic>Channels</topic><topic>Culicidae</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>Dietary supplements</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - drug effects</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - metabolism</topic><topic>Extracellular Space - drug effects</topic><topic>Extracellular Space - metabolism</topic><topic>Genetics and Genomics/Animal Genetics</topic><topic>Genomics</topic><topic>Hemolymph</topic><topic>Homeostasis</topic><topic>Hypermagnesemia</topic><topic>Insects</topic><topic>Kidneys</topic><topic>Larva - drug effects</topic><topic>Larva - growth &amp; development</topic><topic>Larva - metabolism</topic><topic>Lethality</topic><topic>Magnesium</topic><topic>Magnesium - metabolism</topic><topic>Magnesium - pharmacology</topic><topic>Malpighian tubules</topic><topic>Malpighian Tubules - drug effects</topic><topic>Malpighian Tubules - metabolism</topic><topic>Malpighian Tubules - pathology</topic><topic>Mammals</topic><topic>Microscopy</topic><topic>Mosquitoes</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Phenols</topic><topic>Physiology</topic><topic>Physiology/Renal, Fluid, and Electrolyte Physiology</topic><topic>Plasmodium berghei</topic><topic>Proteins</topic><topic>Pupa - drug effects</topic><topic>Pupa - growth &amp; development</topic><topic>Pupa - metabolism</topic><topic>Signaling</topic><topic>Transient receptor potential proteins</topic><topic>TRPM Cation Channels - metabolism</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmann, Thomas</creatorcontrib><creatorcontrib>Chubanov, Vladimir</creatorcontrib><creatorcontrib>Chen, Xiaodi</creatorcontrib><creatorcontrib>Dietz, Anna S</creatorcontrib><creatorcontrib>Gudermann, Thomas</creatorcontrib><creatorcontrib>Montell, Craig</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmann, Thomas</au><au>Chubanov, Vladimir</au><au>Chen, Xiaodi</au><au>Dietz, Anna S</au><au>Gudermann, Thomas</au><au>Montell, Craig</au><au>Bergmann, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-05-06</date><risdate>2010</risdate><volume>5</volume><issue>5</issue><spage>e10519</spage><pages>e10519-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The TRPM group of cation channels plays diverse roles ranging from sensory signaling to Mg2+ homeostasis. In most metazoan organisms the TRPM subfamily is comprised of multiple members, including eight in humans. However, the Drosophila TRPM subfamily is unusual in that it consists of a single member. Currently, the functional requirements for this channel have not been reported. Here, we found that the Drosophila TRPM protein was expressed in the fly counterpart of mammalian kidneys, the Malpighian tubules, which function in the removal of electrolytes and toxic components from the hemolymph. We generated mutations in trpm and found that this resulted in shortening of the Malpighian tubules. In contrast to all other Drosophila trp mutations, loss of trpm was essential for viability, as trpm mutations resulted in pupal lethality. Supplementation of the diet with a high concentration of Mg2+ exacerbated the phenotype, resulting in growth arrest during the larval period. Feeding high Mg2+ also resulted in elevated Mg2+ in the hemolymph, but had relatively little effect on cellular Mg2+. We conclude that loss of Drosophila trpm leads to hypermagnesemia due to a defect in removal of Mg2+ from the hemolymph. These data provide the first evidence for a role for a Drosophila TRP channel in Mg2+ homeostasis, and underscore a broad and evolutionarily conserved role for TRPM channels in Mg2+ homeostasis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20463899</pmid><doi>10.1371/journal.pone.0010519</doi><tpages>e10519</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-05, Vol.5 (5), p.e10519
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292582611
source PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animals
Anopheles stephensi
Cell Biology/Cell Signaling
Channels
Culicidae
Deoxyribonucleic acid
Developmental Biology
Dietary supplements
DNA
Drosophila
Drosophila melanogaster
Drosophila melanogaster - drug effects
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Extracellular Space - drug effects
Extracellular Space - metabolism
Genetics and Genomics/Animal Genetics
Genomics
Hemolymph
Homeostasis
Hypermagnesemia
Insects
Kidneys
Larva - drug effects
Larva - growth & development
Larva - metabolism
Lethality
Magnesium
Magnesium - metabolism
Magnesium - pharmacology
Malpighian tubules
Malpighian Tubules - drug effects
Malpighian Tubules - metabolism
Malpighian Tubules - pathology
Mammals
Microscopy
Mosquitoes
Mutation
Mutation - genetics
Phenols
Physiology
Physiology/Renal, Fluid, and Electrolyte Physiology
Plasmodium berghei
Proteins
Pupa - drug effects
Pupa - growth & development
Pupa - metabolism
Signaling
Transient receptor potential proteins
TRPM Cation Channels - metabolism
Viability
title Drosophila TRPM Channel Is Essential for the Control of Extracellular Magnesium Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20TRPM%20Channel%20Is%20Essential%20for%20the%20Control%20of%20Extracellular%20Magnesium%20Levels&rft.jtitle=PloS%20one&rft.au=Hofmann,%20Thomas&rft.date=2010-05-06&rft.volume=5&rft.issue=5&rft.spage=e10519&rft.pages=e10519-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0010519&rft_dat=%3Cgale_plos_%3EA473896895%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292582611&rft_id=info:pmid/20463899&rft_galeid=A473896895&rft_doaj_id=oai_doaj_org_article_8eb670bf28314eb6bc93d52c2c310055&rfr_iscdi=true