Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv

Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-09, Vol.5 (9), p.e13045
Hauptverfasser: Pink, Ryan C, Eskiw, Christopher H, Caley, Daniel P, Carter, David R F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e13045
container_title PloS one
container_volume 5
creator Pink, Ryan C
Eskiw, Christopher H
Caley, Daniel P
Carter, David R F
description Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.
doi_str_mv 10.1371/journal.pone.0013045
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1292467722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76fde2f4faae435883e7836778ff693a</doaj_id><sourcerecordid>2898421611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</originalsourceid><addsrcrecordid>eNptks1u1DAUhS0EoqXwBggisWBDBv_EdrxBqkb8VKrUDaytG8eeepTYg51E6mvxIDwTLpNWLWLlK_ucz77XB6HXBG8Ik-TjPs4pwLA5xGA3GBOGG_4EnRLFaC0oZk8f1CfoRc57jDlrhXiOTihWVBbIKbo6L4yb7HMVXfX7V70bYudDZa5THGEq1ehNirUNi08xjDZM1Zx92FVQhbjYoWLbaoHkIUwfqma7vETPHAzZvlrXM_Tjy-fv22_15dXXi-35ZW045VNtlMAdUdiABGEYbTvrsLWtANpxZXqh-o5h42gDjHe9sIII17V9bykGzAk7Q2-P3MMQs15nkTWhijZCSkqL4uKo6CPs9SH5EdKNjuD1342YdhrS5M1gtRSugF3jAGzDeNsyK1tWMK1zQjEorE_rbXM32t6UMSQYHkEfnwR_rXdx0VQ1kmNWAO9XQIo_Z5snPfps7DBAsHHOWnJJpGgZL8p3_yj_31xzVJXPyTlZd_8WgvVtPO5c-jYeeo1Hsb152Me96S4P7A8rQbmZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292467722</pqid></control><display><type>article</type><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F</creator><contributor>Lustig, Art J.</contributor><creatorcontrib>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F ; Lustig, Art J.</creatorcontrib><description>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013045</identifier><identifier>PMID: 20927371</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; beta-Globins - genetics ; beta-Globins - metabolism ; Brain ; Brain - embryology ; Brain - metabolism ; Cell Biology/Gene Expression ; Cell Biology/Nuclear Structure and Function ; Cell division ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromosomes ; Chromosomes, Mammalian - genetics ; Chromosomes, Mammalian - metabolism ; Conformation ; Deoxyribonucleic acid ; DNA ; Factories ; Gene expression ; Genetic Techniques ; Genetics and Genomics/Nuclear Structure and Function ; Genomes ; Life sciences ; Liver ; Liver - embryology ; Liver - metabolism ; Localization ; Loci ; Mice ; Mice, Inbred C57BL ; Microscopy ; Morphology ; Protein Binding ; Ribonucleic acid ; RNA ; Territory ; Transcription activation ; Transcriptional Activation</subject><ispartof>PloS one, 2010-09, Vol.5 (9), p.e13045</ispartof><rights>2010 Pink et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Pink et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20927371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lustig, Art J.</contributor><creatorcontrib>Pink, Ryan C</creatorcontrib><creatorcontrib>Eskiw, Christopher H</creatorcontrib><creatorcontrib>Caley, Daniel P</creatorcontrib><creatorcontrib>Carter, David R F</creatorcontrib><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</description><subject>Animals</subject><subject>beta-Globins - genetics</subject><subject>beta-Globins - metabolism</subject><subject>Brain</subject><subject>Brain - embryology</subject><subject>Brain - metabolism</subject><subject>Cell Biology/Gene Expression</subject><subject>Cell Biology/Nuclear Structure and Function</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromosomes</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Chromosomes, Mammalian - metabolism</subject><subject>Conformation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Factories</subject><subject>Gene expression</subject><subject>Genetic Techniques</subject><subject>Genetics and Genomics/Nuclear Structure and Function</subject><subject>Genomes</subject><subject>Life sciences</subject><subject>Liver</subject><subject>Liver - embryology</subject><subject>Liver - metabolism</subject><subject>Localization</subject><subject>Loci</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Protein Binding</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Territory</subject><subject>Transcription activation</subject><subject>Transcriptional Activation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhS0EoqXwBggisWBDBv_EdrxBqkb8VKrUDaytG8eeepTYg51E6mvxIDwTLpNWLWLlK_ucz77XB6HXBG8Ik-TjPs4pwLA5xGA3GBOGG_4EnRLFaC0oZk8f1CfoRc57jDlrhXiOTihWVBbIKbo6L4yb7HMVXfX7V70bYudDZa5THGEq1ehNirUNi08xjDZM1Zx92FVQhbjYoWLbaoHkIUwfqma7vETPHAzZvlrXM_Tjy-fv22_15dXXi-35ZW045VNtlMAdUdiABGEYbTvrsLWtANpxZXqh-o5h42gDjHe9sIII17V9bykGzAk7Q2-P3MMQs15nkTWhijZCSkqL4uKo6CPs9SH5EdKNjuD1342YdhrS5M1gtRSugF3jAGzDeNsyK1tWMK1zQjEorE_rbXM32t6UMSQYHkEfnwR_rXdx0VQ1kmNWAO9XQIo_Z5snPfps7DBAsHHOWnJJpGgZL8p3_yj_31xzVJXPyTlZd_8WgvVtPO5c-jYeeo1Hsb152Me96S4P7A8rQbmZ</recordid><startdate>20100929</startdate><enddate>20100929</enddate><creator>Pink, Ryan C</creator><creator>Eskiw, Christopher H</creator><creator>Caley, Daniel P</creator><creator>Carter, David R F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100929</creationdate><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><author>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>beta-Globins - genetics</topic><topic>beta-Globins - metabolism</topic><topic>Brain</topic><topic>Brain - embryology</topic><topic>Brain - metabolism</topic><topic>Cell Biology/Gene Expression</topic><topic>Cell Biology/Nuclear Structure and Function</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromosomes</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Chromosomes, Mammalian - metabolism</topic><topic>Conformation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Factories</topic><topic>Gene expression</topic><topic>Genetic Techniques</topic><topic>Genetics and Genomics/Nuclear Structure and Function</topic><topic>Genomes</topic><topic>Life sciences</topic><topic>Liver</topic><topic>Liver - embryology</topic><topic>Liver - metabolism</topic><topic>Localization</topic><topic>Loci</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Protein Binding</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Territory</topic><topic>Transcription activation</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pink, Ryan C</creatorcontrib><creatorcontrib>Eskiw, Christopher H</creatorcontrib><creatorcontrib>Caley, Daniel P</creatorcontrib><creatorcontrib>Carter, David R F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pink, Ryan C</au><au>Eskiw, Christopher H</au><au>Caley, Daniel P</au><au>Carter, David R F</au><au>Lustig, Art J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-09-29</date><risdate>2010</risdate><volume>5</volume><issue>9</issue><spage>e13045</spage><pages>e13045-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20927371</pmid><doi>10.1371/journal.pone.0013045</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-09, Vol.5 (9), p.e13045
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292467722
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
beta-Globins - genetics
beta-Globins - metabolism
Brain
Brain - embryology
Brain - metabolism
Cell Biology/Gene Expression
Cell Biology/Nuclear Structure and Function
Cell division
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromosomes
Chromosomes, Mammalian - genetics
Chromosomes, Mammalian - metabolism
Conformation
Deoxyribonucleic acid
DNA
Factories
Gene expression
Genetic Techniques
Genetics and Genomics/Nuclear Structure and Function
Genomes
Life sciences
Liver
Liver - embryology
Liver - metabolism
Localization
Loci
Mice
Mice, Inbred C57BL
Microscopy
Morphology
Protein Binding
Ribonucleic acid
RNA
Territory
Transcription activation
Transcriptional Activation
title Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20%CE%B2-globin%20chromatin%20micro-environment%20using%20a%20novel%203C%20variant,%204Cv&rft.jtitle=PloS%20one&rft.au=Pink,%20Ryan%20C&rft.date=2010-09-29&rft.volume=5&rft.issue=9&rft.spage=e13045&rft.pages=e13045-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013045&rft_dat=%3Cproquest_plos_%3E2898421611%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292467722&rft_id=info:pmid/20927371&rft_doaj_id=oai_doaj_org_article_76fde2f4faae435883e7836778ff693a&rfr_iscdi=true