Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv
Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These t...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-09, Vol.5 (9), p.e13045 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e13045 |
container_title | PloS one |
container_volume | 5 |
creator | Pink, Ryan C Eskiw, Christopher H Caley, Daniel P Carter, David R F |
description | Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory. |
doi_str_mv | 10.1371/journal.pone.0013045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1292467722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76fde2f4faae435883e7836778ff693a</doaj_id><sourcerecordid>2898421611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</originalsourceid><addsrcrecordid>eNptks1u1DAUhS0EoqXwBggisWBDBv_EdrxBqkb8VKrUDaytG8eeepTYg51E6mvxIDwTLpNWLWLlK_ucz77XB6HXBG8Ik-TjPs4pwLA5xGA3GBOGG_4EnRLFaC0oZk8f1CfoRc57jDlrhXiOTihWVBbIKbo6L4yb7HMVXfX7V70bYudDZa5THGEq1ehNirUNi08xjDZM1Zx92FVQhbjYoWLbaoHkIUwfqma7vETPHAzZvlrXM_Tjy-fv22_15dXXi-35ZW045VNtlMAdUdiABGEYbTvrsLWtANpxZXqh-o5h42gDjHe9sIII17V9bykGzAk7Q2-P3MMQs15nkTWhijZCSkqL4uKo6CPs9SH5EdKNjuD1342YdhrS5M1gtRSugF3jAGzDeNsyK1tWMK1zQjEorE_rbXM32t6UMSQYHkEfnwR_rXdx0VQ1kmNWAO9XQIo_Z5snPfps7DBAsHHOWnJJpGgZL8p3_yj_31xzVJXPyTlZd_8WgvVtPO5c-jYeeo1Hsb152Me96S4P7A8rQbmZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292467722</pqid></control><display><type>article</type><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F</creator><contributor>Lustig, Art J.</contributor><creatorcontrib>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F ; Lustig, Art J.</creatorcontrib><description>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013045</identifier><identifier>PMID: 20927371</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; beta-Globins - genetics ; beta-Globins - metabolism ; Brain ; Brain - embryology ; Brain - metabolism ; Cell Biology/Gene Expression ; Cell Biology/Nuclear Structure and Function ; Cell division ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromosomes ; Chromosomes, Mammalian - genetics ; Chromosomes, Mammalian - metabolism ; Conformation ; Deoxyribonucleic acid ; DNA ; Factories ; Gene expression ; Genetic Techniques ; Genetics and Genomics/Nuclear Structure and Function ; Genomes ; Life sciences ; Liver ; Liver - embryology ; Liver - metabolism ; Localization ; Loci ; Mice ; Mice, Inbred C57BL ; Microscopy ; Morphology ; Protein Binding ; Ribonucleic acid ; RNA ; Territory ; Transcription activation ; Transcriptional Activation</subject><ispartof>PloS one, 2010-09, Vol.5 (9), p.e13045</ispartof><rights>2010 Pink et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Pink et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20927371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lustig, Art J.</contributor><creatorcontrib>Pink, Ryan C</creatorcontrib><creatorcontrib>Eskiw, Christopher H</creatorcontrib><creatorcontrib>Caley, Daniel P</creatorcontrib><creatorcontrib>Carter, David R F</creatorcontrib><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</description><subject>Animals</subject><subject>beta-Globins - genetics</subject><subject>beta-Globins - metabolism</subject><subject>Brain</subject><subject>Brain - embryology</subject><subject>Brain - metabolism</subject><subject>Cell Biology/Gene Expression</subject><subject>Cell Biology/Nuclear Structure and Function</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromosomes</subject><subject>Chromosomes, Mammalian - genetics</subject><subject>Chromosomes, Mammalian - metabolism</subject><subject>Conformation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Factories</subject><subject>Gene expression</subject><subject>Genetic Techniques</subject><subject>Genetics and Genomics/Nuclear Structure and Function</subject><subject>Genomes</subject><subject>Life sciences</subject><subject>Liver</subject><subject>Liver - embryology</subject><subject>Liver - metabolism</subject><subject>Localization</subject><subject>Loci</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Protein Binding</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Territory</subject><subject>Transcription activation</subject><subject>Transcriptional Activation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAUhS0EoqXwBggisWBDBv_EdrxBqkb8VKrUDaytG8eeepTYg51E6mvxIDwTLpNWLWLlK_ucz77XB6HXBG8Ik-TjPs4pwLA5xGA3GBOGG_4EnRLFaC0oZk8f1CfoRc57jDlrhXiOTihWVBbIKbo6L4yb7HMVXfX7V70bYudDZa5THGEq1ehNirUNi08xjDZM1Zx92FVQhbjYoWLbaoHkIUwfqma7vETPHAzZvlrXM_Tjy-fv22_15dXXi-35ZW045VNtlMAdUdiABGEYbTvrsLWtANpxZXqh-o5h42gDjHe9sIII17V9bykGzAk7Q2-P3MMQs15nkTWhijZCSkqL4uKo6CPs9SH5EdKNjuD1342YdhrS5M1gtRSugF3jAGzDeNsyK1tWMK1zQjEorE_rbXM32t6UMSQYHkEfnwR_rXdx0VQ1kmNWAO9XQIo_Z5snPfps7DBAsHHOWnJJpGgZL8p3_yj_31xzVJXPyTlZd_8WgvVtPO5c-jYeeo1Hsb152Me96S4P7A8rQbmZ</recordid><startdate>20100929</startdate><enddate>20100929</enddate><creator>Pink, Ryan C</creator><creator>Eskiw, Christopher H</creator><creator>Caley, Daniel P</creator><creator>Carter, David R F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100929</creationdate><title>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</title><author>Pink, Ryan C ; Eskiw, Christopher H ; Caley, Daniel P ; Carter, David R F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-c960b190ca7a6c328bef0ee86a2b59cd69db30cf24a35bd6e616fb8dde20a0513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>beta-Globins - genetics</topic><topic>beta-Globins - metabolism</topic><topic>Brain</topic><topic>Brain - embryology</topic><topic>Brain - metabolism</topic><topic>Cell Biology/Gene Expression</topic><topic>Cell Biology/Nuclear Structure and Function</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromosomes</topic><topic>Chromosomes, Mammalian - genetics</topic><topic>Chromosomes, Mammalian - metabolism</topic><topic>Conformation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Factories</topic><topic>Gene expression</topic><topic>Genetic Techniques</topic><topic>Genetics and Genomics/Nuclear Structure and Function</topic><topic>Genomes</topic><topic>Life sciences</topic><topic>Liver</topic><topic>Liver - embryology</topic><topic>Liver - metabolism</topic><topic>Localization</topic><topic>Loci</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Protein Binding</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Territory</topic><topic>Transcription activation</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pink, Ryan C</creatorcontrib><creatorcontrib>Eskiw, Christopher H</creatorcontrib><creatorcontrib>Caley, Daniel P</creatorcontrib><creatorcontrib>Carter, David R F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pink, Ryan C</au><au>Eskiw, Christopher H</au><au>Caley, Daniel P</au><au>Carter, David R F</au><au>Lustig, Art J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-09-29</date><risdate>2010</risdate><volume>5</volume><issue>9</issue><spage>e13045</spage><pages>e13045-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Higher order chromatin folding is critical to a number of developmental processes, including the regulation of gene expression. Recently developed biochemical techniques such as RNA TRAP and chromosome conformation capture (3C) have provided us with the tools to probe chromosomal structures. These techniques have been applied to the β-globin locus, revealing a complex pattern of interactions with regions along the chromosome that the gene resides on. However, biochemical and microscopy data on the nature of β-globin interactions with other chromosomes is contradictory. Therefore we developed a novel 4C variant, Complete-genome 3C by vectorette amplification (4Cv), which allows an unbiased and quantitative method to examine chromosomal structure. We have used 4Cv to study the microenvironment of the β-globin locus in mice and show that a significant proportion of the interactions of β-globin are inter-chromosomal. Furthermore, our data show that in the liver, where the gene is active, β-globin is more likely to interact with other chromosomes, compared to the brain where the gene is silent and is more likely to interact with other regions along the same chromosome. Our data suggest that transcriptional activation of the β-globin locus leads to a change in nuclear position relative to the chromosome territory.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20927371</pmid><doi>10.1371/journal.pone.0013045</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-09, Vol.5 (9), p.e13045 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292467722 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals beta-Globins - genetics beta-Globins - metabolism Brain Brain - embryology Brain - metabolism Cell Biology/Gene Expression Cell Biology/Nuclear Structure and Function Cell division Chromatin Chromatin - genetics Chromatin - metabolism Chromosomes Chromosomes, Mammalian - genetics Chromosomes, Mammalian - metabolism Conformation Deoxyribonucleic acid DNA Factories Gene expression Genetic Techniques Genetics and Genomics/Nuclear Structure and Function Genomes Life sciences Liver Liver - embryology Liver - metabolism Localization Loci Mice Mice, Inbred C57BL Microscopy Morphology Protein Binding Ribonucleic acid RNA Territory Transcription activation Transcriptional Activation |
title | Analysis of β-globin chromatin micro-environment using a novel 3C variant, 4Cv |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20%CE%B2-globin%20chromatin%20micro-environment%20using%20a%20novel%203C%20variant,%204Cv&rft.jtitle=PloS%20one&rft.au=Pink,%20Ryan%20C&rft.date=2010-09-29&rft.volume=5&rft.issue=9&rft.spage=e13045&rft.pages=e13045-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013045&rft_dat=%3Cproquest_plos_%3E2898421611%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292467722&rft_id=info:pmid/20927371&rft_doaj_id=oai_doaj_org_article_76fde2f4faae435883e7836778ff693a&rfr_iscdi=true |