Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells
Chronic bacterial infection increased the risk of many solid malignancies and the underlying mechanism is usually ascribed to bacterial-caused inflammation. However, the direct interaction of infectious bacteria with cancer cells has been largely overlooked. We identified that highly metastatic brea...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-05, Vol.5 (5), p.e10850 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e10850 |
container_title | PloS one |
container_volume | 5 |
creator | Xie, Wenjie Huang, Yafang Xie, Wenling Guo, Aimin Wu, Wei |
description | Chronic bacterial infection increased the risk of many solid malignancies and the underlying mechanism is usually ascribed to bacterial-caused inflammation. However, the direct interaction of infectious bacteria with cancer cells has been largely overlooked. We identified that highly metastatic breast cancer MDA-MB-231 cells expressed high level of Toll-like receptor 2 (TLR2) in contrast to poorly metastatic breast cancer cells and homogenous untransformed breast cells. TLR2 in MDA-MB-231 cells were actively triggered by peptidoglycan (PGN) from infectious bacterium Staphylococcus aureus (PGN-SA), resulting in the promoted invasiveness and adhesiveness of the cancer cells in vitro. PGN-SA induced phosphorylation of TAK1 and IkappaB in the TLR2-NF-kappaB pathway of the cancer cells and stimulated IL-6 and TGF-beta secretion in MDA-MB-231 cells. All these effects were abrogated by TLR2 blockade. Further investigation showed that the NF-kappaB, STAT3 and Smad3 activities were augmented sequentially in MDA-MB-231 cells after PGN-SA stimulation. Phosphorylation of NF-kappaBp65 was initially increased and then followed by phosphorylation of STAT3 and Smad3 in the delayed 4 or 6 hours. NF-kappaB inhibition attenuated STAT3 and Smad3 activities whereas PGN-SA-stimulated cell culture supernatants reversed these inhibitory effects. Our study indicated that TLR2 activation by infectious bacterial PGN played an important role in breast cancer cell invasiveness and illustrated a new link between infectious bacteria and the cancer cells, suggesting the importance of antibiotic therapy to treat cancer with bacterial infection. |
doi_str_mv | 10.1371/journal.pone.0010850 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292462211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473893278</galeid><doaj_id>oai_doaj_org_article_da27abee0cb24c88838d027b3303350c</doaj_id><sourcerecordid>A473893278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c789t-3aa18cea70c6eed3a1051de3801dcdc10ec6cf88b60ca3141be3f35662df20743</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnERYsPTeLeIC0rDpVWWonTrTWxJ6mLGxfbregL8Ny4NFu1aC9QLhyNv_-f8dhTFE8ZHTNRszcLvw49uPHK9zimlFFZ0nvFOZsKPqo4FfeP_s-KRzEuKC2FrKqHxRmnJad1Tc-L3-9AJwwWyApXyRrfua2GnqyCX_qEhjQBISaSYxoD0egcsf0Got1gjzES6A0BM8dDoNmSBKHDZPuOJO_cyNkfSALqnMAHwrOepDkeW8bHxYMWXMQnw3pRfPvw_uvVp9H1zcfZ1eX1SNdymkYCgEmNUFNdIRoBjJbMoJCUGW00o6gr3UrZVFSDYBPWoGhFWVXctPnAE3FRPN_7rpyPamhhVIxP-aTinLFMzPaE8bBQq2CXELbKg1V_Az50CkKy2qEywGtoEKlu-ERLKYU0lNeNEFSIkurs9XbItm6WaDT2KYA7MT3d6e1cdX6juKxrRnfFvBoMgv-5xpjU0sZdw6BHv46qzkULLkqRyRf_kHcfbqA6yPXbvvU5rd55qstJLWR-L7XM1PgOKn8Gl1bn59baHD8RvD4RZCbhr9TBOkY1-_L5_9mb76fsyyN2juDSPHq3Ttb38RSc7EEdfIwB20OPGVW7abnthtpNixqmJcueHd_PQXQ7HuIPMTcRzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292462211</pqid></control><display><type>article</type><title>Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PLoS_OA刊</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Xie, Wenjie ; Huang, Yafang ; Xie, Wenling ; Guo, Aimin ; Wu, Wei</creator><contributor>Aziz, Syed A.</contributor><creatorcontrib>Xie, Wenjie ; Huang, Yafang ; Xie, Wenling ; Guo, Aimin ; Wu, Wei ; Aziz, Syed A.</creatorcontrib><description>Chronic bacterial infection increased the risk of many solid malignancies and the underlying mechanism is usually ascribed to bacterial-caused inflammation. However, the direct interaction of infectious bacteria with cancer cells has been largely overlooked. We identified that highly metastatic breast cancer MDA-MB-231 cells expressed high level of Toll-like receptor 2 (TLR2) in contrast to poorly metastatic breast cancer cells and homogenous untransformed breast cells. TLR2 in MDA-MB-231 cells were actively triggered by peptidoglycan (PGN) from infectious bacterium Staphylococcus aureus (PGN-SA), resulting in the promoted invasiveness and adhesiveness of the cancer cells in vitro. PGN-SA induced phosphorylation of TAK1 and IkappaB in the TLR2-NF-kappaB pathway of the cancer cells and stimulated IL-6 and TGF-beta secretion in MDA-MB-231 cells. All these effects were abrogated by TLR2 blockade. Further investigation showed that the NF-kappaB, STAT3 and Smad3 activities were augmented sequentially in MDA-MB-231 cells after PGN-SA stimulation. Phosphorylation of NF-kappaBp65 was initially increased and then followed by phosphorylation of STAT3 and Smad3 in the delayed 4 or 6 hours. NF-kappaB inhibition attenuated STAT3 and Smad3 activities whereas PGN-SA-stimulated cell culture supernatants reversed these inhibitory effects. Our study indicated that TLR2 activation by infectious bacterial PGN played an important role in breast cancer cell invasiveness and illustrated a new link between infectious bacteria and the cancer cells, suggesting the importance of antibiotic therapy to treat cancer with bacterial infection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0010850</identifier><identifier>PMID: 20520770</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Angiogenesis ; Antibiotics ; Bacteria ; Bacterial infections ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cancer ; Cancer cells ; Cancer metastasis ; Cancer research ; Cell Adhesion - drug effects ; Cell culture ; Cell Line, Tumor ; Chronic infection ; Colorectal cancer ; Cytokines ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Health aspects ; Health risks ; Humans ; Infections ; Infectious diseases ; Inflammation ; Inflammatory bowel disease ; Interleukin 6 ; Interleukin-6 - metabolism ; Invasiveness ; Ligands ; Listeria ; Mammals ; Mediation ; Metastases ; Metastasis ; Neoplasm Invasiveness ; NF-kappa B - metabolism ; NF-κB protein ; Nonsteroidal anti-inflammatory drugs ; Oncology ; Oncology/Breast Cancer ; Pathogenesis ; Pathology ; Pathology/Cellular Pathology ; Peptidoglycan - pharmacology ; Peptidoglycans ; Phosphorylation ; Prostate cancer ; Public health ; Real time ; Rodents ; Signal Transduction - drug effects ; Smad3 protein ; Smad3 Protein - metabolism ; Staphylococcus aureus ; Staphylococcus aureus - chemistry ; Staphylococcus aureus infections ; Stat3 protein ; STAT3 Transcription Factor - metabolism ; TAK1 protein ; TLR2 protein ; Toll-Like Receptor 2 - metabolism ; Toll-like receptors ; Transforming Growth Factor beta - metabolism ; Transforming growth factors ; Tumorigenesis ; Vascular endothelial growth factor</subject><ispartof>PloS one, 2010-05, Vol.5 (5), p.e10850</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Xie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Xie et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c789t-3aa18cea70c6eed3a1051de3801dcdc10ec6cf88b60ca3141be3f35662df20743</citedby><cites>FETCH-LOGICAL-c789t-3aa18cea70c6eed3a1051de3801dcdc10ec6cf88b60ca3141be3f35662df20743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20520770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Aziz, Syed A.</contributor><creatorcontrib>Xie, Wenjie</creatorcontrib><creatorcontrib>Huang, Yafang</creatorcontrib><creatorcontrib>Xie, Wenling</creatorcontrib><creatorcontrib>Guo, Aimin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><title>Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Chronic bacterial infection increased the risk of many solid malignancies and the underlying mechanism is usually ascribed to bacterial-caused inflammation. However, the direct interaction of infectious bacteria with cancer cells has been largely overlooked. We identified that highly metastatic breast cancer MDA-MB-231 cells expressed high level of Toll-like receptor 2 (TLR2) in contrast to poorly metastatic breast cancer cells and homogenous untransformed breast cells. TLR2 in MDA-MB-231 cells were actively triggered by peptidoglycan (PGN) from infectious bacterium Staphylococcus aureus (PGN-SA), resulting in the promoted invasiveness and adhesiveness of the cancer cells in vitro. PGN-SA induced phosphorylation of TAK1 and IkappaB in the TLR2-NF-kappaB pathway of the cancer cells and stimulated IL-6 and TGF-beta secretion in MDA-MB-231 cells. All these effects were abrogated by TLR2 blockade. Further investigation showed that the NF-kappaB, STAT3 and Smad3 activities were augmented sequentially in MDA-MB-231 cells after PGN-SA stimulation. Phosphorylation of NF-kappaBp65 was initially increased and then followed by phosphorylation of STAT3 and Smad3 in the delayed 4 or 6 hours. NF-kappaB inhibition attenuated STAT3 and Smad3 activities whereas PGN-SA-stimulated cell culture supernatants reversed these inhibitory effects. Our study indicated that TLR2 activation by infectious bacterial PGN played an important role in breast cancer cell invasiveness and illustrated a new link between infectious bacteria and the cancer cells, suggesting the importance of antibiotic therapy to treat cancer with bacterial infection.</description><subject>Angiogenesis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer</subject><subject>Cancer cells</subject><subject>Cancer metastasis</subject><subject>Cancer research</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell culture</subject><subject>Cell Line, Tumor</subject><subject>Chronic infection</subject><subject>Colorectal cancer</subject><subject>Cytokines</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Humans</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Inflammation</subject><subject>Inflammatory bowel disease</subject><subject>Interleukin 6</subject><subject>Interleukin-6 - metabolism</subject><subject>Invasiveness</subject><subject>Ligands</subject><subject>Listeria</subject><subject>Mammals</subject><subject>Mediation</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Neoplasm Invasiveness</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Nonsteroidal anti-inflammatory drugs</subject><subject>Oncology</subject><subject>Oncology/Breast Cancer</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pathology/Cellular Pathology</subject><subject>Peptidoglycan - pharmacology</subject><subject>Peptidoglycans</subject><subject>Phosphorylation</subject><subject>Prostate cancer</subject><subject>Public health</subject><subject>Real time</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><subject>Smad3 protein</subject><subject>Smad3 Protein - metabolism</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - chemistry</subject><subject>Staphylococcus aureus infections</subject><subject>Stat3 protein</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>TAK1 protein</subject><subject>TLR2 protein</subject><subject>Toll-Like Receptor 2 - metabolism</subject><subject>Toll-like receptors</subject><subject>Transforming Growth Factor beta - metabolism</subject><subject>Transforming growth factors</subject><subject>Tumorigenesis</subject><subject>Vascular endothelial growth factor</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnERYsPTeLeIC0rDpVWWonTrTWxJ6mLGxfbregL8Ny4NFu1aC9QLhyNv_-f8dhTFE8ZHTNRszcLvw49uPHK9zimlFFZ0nvFOZsKPqo4FfeP_s-KRzEuKC2FrKqHxRmnJad1Tc-L3-9AJwwWyApXyRrfua2GnqyCX_qEhjQBISaSYxoD0egcsf0Got1gjzES6A0BM8dDoNmSBKHDZPuOJO_cyNkfSALqnMAHwrOepDkeW8bHxYMWXMQnw3pRfPvw_uvVp9H1zcfZ1eX1SNdymkYCgEmNUFNdIRoBjJbMoJCUGW00o6gr3UrZVFSDYBPWoGhFWVXctPnAE3FRPN_7rpyPamhhVIxP-aTinLFMzPaE8bBQq2CXELbKg1V_Az50CkKy2qEywGtoEKlu-ERLKYU0lNeNEFSIkurs9XbItm6WaDT2KYA7MT3d6e1cdX6juKxrRnfFvBoMgv-5xpjU0sZdw6BHv46qzkULLkqRyRf_kHcfbqA6yPXbvvU5rd55qstJLWR-L7XM1PgOKn8Gl1bn59baHD8RvD4RZCbhr9TBOkY1-_L5_9mb76fsyyN2juDSPHq3Ttb38RSc7EEdfIwB20OPGVW7abnthtpNixqmJcueHd_PQXQ7HuIPMTcRzw</recordid><startdate>20100526</startdate><enddate>20100526</enddate><creator>Xie, Wenjie</creator><creator>Huang, Yafang</creator><creator>Xie, Wenling</creator><creator>Guo, Aimin</creator><creator>Wu, Wei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7T7</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100526</creationdate><title>Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells</title><author>Xie, Wenjie ; Huang, Yafang ; Xie, Wenling ; Guo, Aimin ; Wu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c789t-3aa18cea70c6eed3a1051de3801dcdc10ec6cf88b60ca3141be3f35662df20743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer</topic><topic>Cancer cells</topic><topic>Cancer metastasis</topic><topic>Cancer research</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell culture</topic><topic>Cell Line, Tumor</topic><topic>Chronic infection</topic><topic>Colorectal cancer</topic><topic>Cytokines</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Humans</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Inflammation</topic><topic>Inflammatory bowel disease</topic><topic>Interleukin 6</topic><topic>Interleukin-6 - metabolism</topic><topic>Invasiveness</topic><topic>Ligands</topic><topic>Listeria</topic><topic>Mammals</topic><topic>Mediation</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Neoplasm Invasiveness</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Nonsteroidal anti-inflammatory drugs</topic><topic>Oncology</topic><topic>Oncology/Breast Cancer</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pathology/Cellular Pathology</topic><topic>Peptidoglycan - pharmacology</topic><topic>Peptidoglycans</topic><topic>Phosphorylation</topic><topic>Prostate cancer</topic><topic>Public health</topic><topic>Real time</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><topic>Smad3 protein</topic><topic>Smad3 Protein - metabolism</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - chemistry</topic><topic>Staphylococcus aureus infections</topic><topic>Stat3 protein</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>TAK1 protein</topic><topic>TLR2 protein</topic><topic>Toll-Like Receptor 2 - metabolism</topic><topic>Toll-like receptors</topic><topic>Transforming Growth Factor beta - metabolism</topic><topic>Transforming growth factors</topic><topic>Tumorigenesis</topic><topic>Vascular endothelial growth factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wenjie</creatorcontrib><creatorcontrib>Huang, Yafang</creatorcontrib><creatorcontrib>Xie, Wenling</creatorcontrib><creatorcontrib>Guo, Aimin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wenjie</au><au>Huang, Yafang</au><au>Xie, Wenling</au><au>Guo, Aimin</au><au>Wu, Wei</au><au>Aziz, Syed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-05-26</date><risdate>2010</risdate><volume>5</volume><issue>5</issue><spage>e10850</spage><pages>e10850-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Chronic bacterial infection increased the risk of many solid malignancies and the underlying mechanism is usually ascribed to bacterial-caused inflammation. However, the direct interaction of infectious bacteria with cancer cells has been largely overlooked. We identified that highly metastatic breast cancer MDA-MB-231 cells expressed high level of Toll-like receptor 2 (TLR2) in contrast to poorly metastatic breast cancer cells and homogenous untransformed breast cells. TLR2 in MDA-MB-231 cells were actively triggered by peptidoglycan (PGN) from infectious bacterium Staphylococcus aureus (PGN-SA), resulting in the promoted invasiveness and adhesiveness of the cancer cells in vitro. PGN-SA induced phosphorylation of TAK1 and IkappaB in the TLR2-NF-kappaB pathway of the cancer cells and stimulated IL-6 and TGF-beta secretion in MDA-MB-231 cells. All these effects were abrogated by TLR2 blockade. Further investigation showed that the NF-kappaB, STAT3 and Smad3 activities were augmented sequentially in MDA-MB-231 cells after PGN-SA stimulation. Phosphorylation of NF-kappaBp65 was initially increased and then followed by phosphorylation of STAT3 and Smad3 in the delayed 4 or 6 hours. NF-kappaB inhibition attenuated STAT3 and Smad3 activities whereas PGN-SA-stimulated cell culture supernatants reversed these inhibitory effects. Our study indicated that TLR2 activation by infectious bacterial PGN played an important role in breast cancer cell invasiveness and illustrated a new link between infectious bacteria and the cancer cells, suggesting the importance of antibiotic therapy to treat cancer with bacterial infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20520770</pmid><doi>10.1371/journal.pone.0010850</doi><tpages>e10850</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-05, Vol.5 (5), p.e10850 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292462211 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PLoS_OA刊; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Angiogenesis Antibiotics Bacteria Bacterial infections Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Cancer Cancer cells Cancer metastasis Cancer research Cell Adhesion - drug effects Cell culture Cell Line, Tumor Chronic infection Colorectal cancer Cytokines Female Gene Expression Profiling Gene Expression Regulation, Neoplastic - drug effects Health aspects Health risks Humans Infections Infectious diseases Inflammation Inflammatory bowel disease Interleukin 6 Interleukin-6 - metabolism Invasiveness Ligands Listeria Mammals Mediation Metastases Metastasis Neoplasm Invasiveness NF-kappa B - metabolism NF-κB protein Nonsteroidal anti-inflammatory drugs Oncology Oncology/Breast Cancer Pathogenesis Pathology Pathology/Cellular Pathology Peptidoglycan - pharmacology Peptidoglycans Phosphorylation Prostate cancer Public health Real time Rodents Signal Transduction - drug effects Smad3 protein Smad3 Protein - metabolism Staphylococcus aureus Staphylococcus aureus - chemistry Staphylococcus aureus infections Stat3 protein STAT3 Transcription Factor - metabolism TAK1 protein TLR2 protein Toll-Like Receptor 2 - metabolism Toll-like receptors Transforming Growth Factor beta - metabolism Transforming growth factors Tumorigenesis Vascular endothelial growth factor |
title | Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacteria%20peptidoglycan%20promoted%20breast%20cancer%20cell%20invasiveness%20and%20adhesiveness%20by%20targeting%20toll-like%20receptor%202%20in%20the%20cancer%20cells&rft.jtitle=PloS%20one&rft.au=Xie,%20Wenjie&rft.date=2010-05-26&rft.volume=5&rft.issue=5&rft.spage=e10850&rft.pages=e10850-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0010850&rft_dat=%3Cgale_plos_%3EA473893278%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292462211&rft_id=info:pmid/20520770&rft_galeid=A473893278&rft_doaj_id=oai_doaj_org_article_da27abee0cb24c88838d027b3303350c&rfr_iscdi=true |