Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where ei...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-06, Vol.5 (6), p.e10947-e10947 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e10947 |
---|---|
container_issue | 6 |
container_start_page | e10947 |
container_title | PloS one |
container_volume | 5 |
creator | Moreira de Mello, Joana Carvalho de Araújo, Erica Sara Souza Stabellini, Raquel Fraga, Ana Maria de Souza, Jorge Estefano Santana Sumita, Denilce R Camargo, Anamaria A Pereira, Lygia V |
description | Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals. |
doi_str_mv | 10.1371/journal.pone.0010947 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292425782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473893130</galeid><doaj_id>oai_doaj_org_article_e42ab24c91704da1a626ba64d3d5f6b4</doaj_id><sourcerecordid>A473893130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-65889e455d25d10ccb267ea096e95d29b19b0f51291cf46819347399b5a6f5553</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgsHGLpLpw5Ltm0Ep-wgUCt0HuxPH8nGiIEupZYflT-w3T2nSkoxeDF_YHD_ve-xX52TZS0anTBTswzKMvQc3XQWPU0oZrfLiUXbKKsEnilPx-OD5JHsW45JSKUqlnmYnPD2lsjjN_lyDb0JHfhHrwQx2DYMNnqQiwd8D-mjXSLoQwRobuwSRxdiBJysHBv0ApMc1gsOG1JukAreJNpLQEnAOHU7iCo1trSFz9JgsVz3GeNvBBT8nwwJTa7PoQ-oROnyePWnBRXyxv59lPz5_-n7xdXJ59WV2cX45MYUshomSZVlhLmXDZcOoMTVXBQKtFFapVtWsqmkrGa-YaXNVpiDyQlRVLUG1Ukpxlr3e-a5ciHofZdRJwHMui5InYrYjmgBLveptB_1GB7D6thD6uYZ-sMahxpxDzXNTsYLmDTBQXNWg8kY0slV1nrw-7ruNdYfNNrge3JHp8RtvF3oe1pqXJaNi-zHv9gZ9uBkxDrqz0aBz4DGMURdCcMW4UIl88w_58M_tqXk6Om19G1Jbs_XU5ymoshJM0ERNH6DS1WBnTRq71qb6keD9kSAxQ5qiOYwx6tm36_9nr34es28P2EWat2ERgxu3oxqPwXwHmj7E2GN7nzGjers1d2no7dbo_dYk2avD87kX3a2J-AtOvRMx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292425782</pqid></control><display><type>article</type><title>Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Moreira de Mello, Joana Carvalho ; de Araújo, Erica Sara Souza ; Stabellini, Raquel ; Fraga, Ana Maria ; de Souza, Jorge Estefano Santana ; Sumita, Denilce R ; Camargo, Anamaria A ; Pereira, Lygia V</creator><creatorcontrib>Moreira de Mello, Joana Carvalho ; de Araújo, Erica Sara Souza ; Stabellini, Raquel ; Fraga, Ana Maria ; de Souza, Jorge Estefano Santana ; Sumita, Denilce R ; Camargo, Anamaria A ; Pereira, Lygia V</creatorcontrib><description>Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0010947</identifier><identifier>PMID: 20532033</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alleles ; Analysis ; Animal tissues ; Automation ; Biological evolution ; Chromosomes ; Chromosomes, Human, X ; Compensation ; Deactivation ; Deoxyribonucleic acid ; DNA ; Dosage ; Dosage compensation ; Epigenetics ; Evolution (Biology) ; Evolutionary biology ; Evolutionary Biology/Human Evolution ; Female ; Females ; Fibroblasts ; Gene Expression ; Gene silencing ; Genes ; Genetic aspects ; Genetic engineering ; Genetic testing ; Genetics and Genomics/Epigenetics ; Genetics and Genomics/Gene Expression ; Genomes ; Genomic Imprinting ; Human performance ; Humans ; Inactivation ; Male ; Males ; Mammals ; Medical research ; Mosaicism ; Placenta ; Placenta - metabolism ; Polymorphism, Single Nucleotide ; Pregnancy ; Single-nucleotide polymorphism ; Stem cells ; X Chromosome Inactivation ; X Chromosomes</subject><ispartof>PloS one, 2010-06, Vol.5 (6), p.e10947-e10947</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Moreira de Mello et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Moreira de Mello et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-65889e455d25d10ccb267ea096e95d29b19b0f51291cf46819347399b5a6f5553</citedby><cites>FETCH-LOGICAL-c757t-65889e455d25d10ccb267ea096e95d29b19b0f51291cf46819347399b5a6f5553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881032/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881032/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20532033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreira de Mello, Joana Carvalho</creatorcontrib><creatorcontrib>de Araújo, Erica Sara Souza</creatorcontrib><creatorcontrib>Stabellini, Raquel</creatorcontrib><creatorcontrib>Fraga, Ana Maria</creatorcontrib><creatorcontrib>de Souza, Jorge Estefano Santana</creatorcontrib><creatorcontrib>Sumita, Denilce R</creatorcontrib><creatorcontrib>Camargo, Anamaria A</creatorcontrib><creatorcontrib>Pereira, Lygia V</creatorcontrib><title>Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.</description><subject>Alleles</subject><subject>Analysis</subject><subject>Animal tissues</subject><subject>Automation</subject><subject>Biological evolution</subject><subject>Chromosomes</subject><subject>Chromosomes, Human, X</subject><subject>Compensation</subject><subject>Deactivation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Dosage</subject><subject>Dosage compensation</subject><subject>Epigenetics</subject><subject>Evolution (Biology)</subject><subject>Evolutionary biology</subject><subject>Evolutionary Biology/Human Evolution</subject><subject>Female</subject><subject>Females</subject><subject>Fibroblasts</subject><subject>Gene Expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic testing</subject><subject>Genetics and Genomics/Epigenetics</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genomes</subject><subject>Genomic Imprinting</subject><subject>Human performance</subject><subject>Humans</subject><subject>Inactivation</subject><subject>Male</subject><subject>Males</subject><subject>Mammals</subject><subject>Medical research</subject><subject>Mosaicism</subject><subject>Placenta</subject><subject>Placenta - metabolism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Pregnancy</subject><subject>Single-nucleotide polymorphism</subject><subject>Stem cells</subject><subject>X Chromosome Inactivation</subject><subject>X Chromosomes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgsHGLpLpw5Ltm0Ep-wgUCt0HuxPH8nGiIEupZYflT-w3T2nSkoxeDF_YHD_ve-xX52TZS0anTBTswzKMvQc3XQWPU0oZrfLiUXbKKsEnilPx-OD5JHsW45JSKUqlnmYnPD2lsjjN_lyDb0JHfhHrwQx2DYMNnqQiwd8D-mjXSLoQwRobuwSRxdiBJysHBv0ApMc1gsOG1JukAreJNpLQEnAOHU7iCo1trSFz9JgsVz3GeNvBBT8nwwJTa7PoQ-oROnyePWnBRXyxv59lPz5_-n7xdXJ59WV2cX45MYUshomSZVlhLmXDZcOoMTVXBQKtFFapVtWsqmkrGa-YaXNVpiDyQlRVLUG1Ukpxlr3e-a5ciHofZdRJwHMui5InYrYjmgBLveptB_1GB7D6thD6uYZ-sMahxpxDzXNTsYLmDTBQXNWg8kY0slV1nrw-7ruNdYfNNrge3JHp8RtvF3oe1pqXJaNi-zHv9gZ9uBkxDrqz0aBz4DGMURdCcMW4UIl88w_58M_tqXk6Om19G1Jbs_XU5ymoshJM0ERNH6DS1WBnTRq71qb6keD9kSAxQ5qiOYwx6tm36_9nr34es28P2EWat2ERgxu3oxqPwXwHmj7E2GN7nzGjers1d2no7dbo_dYk2avD87kX3a2J-AtOvRMx</recordid><startdate>20100604</startdate><enddate>20100604</enddate><creator>Moreira de Mello, Joana Carvalho</creator><creator>de Araújo, Erica Sara Souza</creator><creator>Stabellini, Raquel</creator><creator>Fraga, Ana Maria</creator><creator>de Souza, Jorge Estefano Santana</creator><creator>Sumita, Denilce R</creator><creator>Camargo, Anamaria A</creator><creator>Pereira, Lygia V</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100604</creationdate><title>Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome</title><author>Moreira de Mello, Joana Carvalho ; de Araújo, Erica Sara Souza ; Stabellini, Raquel ; Fraga, Ana Maria ; de Souza, Jorge Estefano Santana ; Sumita, Denilce R ; Camargo, Anamaria A ; Pereira, Lygia V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-65889e455d25d10ccb267ea096e95d29b19b0f51291cf46819347399b5a6f5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alleles</topic><topic>Analysis</topic><topic>Animal tissues</topic><topic>Automation</topic><topic>Biological evolution</topic><topic>Chromosomes</topic><topic>Chromosomes, Human, X</topic><topic>Compensation</topic><topic>Deactivation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Dosage</topic><topic>Dosage compensation</topic><topic>Epigenetics</topic><topic>Evolution (Biology)</topic><topic>Evolutionary biology</topic><topic>Evolutionary Biology/Human Evolution</topic><topic>Female</topic><topic>Females</topic><topic>Fibroblasts</topic><topic>Gene Expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic testing</topic><topic>Genetics and Genomics/Epigenetics</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genomes</topic><topic>Genomic Imprinting</topic><topic>Human performance</topic><topic>Humans</topic><topic>Inactivation</topic><topic>Male</topic><topic>Males</topic><topic>Mammals</topic><topic>Medical research</topic><topic>Mosaicism</topic><topic>Placenta</topic><topic>Placenta - metabolism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Pregnancy</topic><topic>Single-nucleotide polymorphism</topic><topic>Stem cells</topic><topic>X Chromosome Inactivation</topic><topic>X Chromosomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreira de Mello, Joana Carvalho</creatorcontrib><creatorcontrib>de Araújo, Erica Sara Souza</creatorcontrib><creatorcontrib>Stabellini, Raquel</creatorcontrib><creatorcontrib>Fraga, Ana Maria</creatorcontrib><creatorcontrib>de Souza, Jorge Estefano Santana</creatorcontrib><creatorcontrib>Sumita, Denilce R</creatorcontrib><creatorcontrib>Camargo, Anamaria A</creatorcontrib><creatorcontrib>Pereira, Lygia V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreira de Mello, Joana Carvalho</au><au>de Araújo, Erica Sara Souza</au><au>Stabellini, Raquel</au><au>Fraga, Ana Maria</au><au>de Souza, Jorge Estefano Santana</au><au>Sumita, Denilce R</au><au>Camargo, Anamaria A</au><au>Pereira, Lygia V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-06-04</date><risdate>2010</risdate><volume>5</volume><issue>6</issue><spage>e10947</spage><epage>e10947</epage><pages>e10947-e10947</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20532033</pmid><doi>10.1371/journal.pone.0010947</doi><tpages>e10947</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-06, Vol.5 (6), p.e10947-e10947 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292425782 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Alleles Analysis Animal tissues Automation Biological evolution Chromosomes Chromosomes, Human, X Compensation Deactivation Deoxyribonucleic acid DNA Dosage Dosage compensation Epigenetics Evolution (Biology) Evolutionary biology Evolutionary Biology/Human Evolution Female Females Fibroblasts Gene Expression Gene silencing Genes Genetic aspects Genetic engineering Genetic testing Genetics and Genomics/Epigenetics Genetics and Genomics/Gene Expression Genomes Genomic Imprinting Human performance Humans Inactivation Male Males Mammals Medical research Mosaicism Placenta Placenta - metabolism Polymorphism, Single Nucleotide Pregnancy Single-nucleotide polymorphism Stem cells X Chromosome Inactivation X Chromosomes |
title | Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20X%20inactivation%20and%20extensive%20mosaicism%20in%20human%20placenta%20revealed%20by%20analysis%20of%20allele-specific%20gene%20expression%20along%20the%20X%20chromosome&rft.jtitle=PloS%20one&rft.au=Moreira%20de%20Mello,%20Joana%20Carvalho&rft.date=2010-06-04&rft.volume=5&rft.issue=6&rft.spage=e10947&rft.epage=e10947&rft.pages=e10947-e10947&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0010947&rft_dat=%3Cgale_plos_%3EA473893130%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292425782&rft_id=info:pmid/20532033&rft_galeid=A473893130&rft_doaj_id=oai_doaj_org_article_e42ab24c91704da1a626ba64d3d5f6b4&rfr_iscdi=true |