Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos

Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2009-01, Vol.7 (1), p.e13-e1000013
Hauptverfasser: Schuettengruber, Bernd, Ganapathi, Mythily, Leblanc, Benjamin, Portoso, Manuela, Jaschek, Rami, Tolhuis, Bas, van Lohuizen, Maarten, Tanay, Amos, Cavalli, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1000013
container_issue 1
container_start_page e13
container_title PLoS biology
container_volume 7
creator Schuettengruber, Bernd
Ganapathi, Mythily
Leblanc, Benjamin
Portoso, Manuela
Jaschek, Rami
Tolhuis, Bas
van Lohuizen, Maarten
Tanay, Amos
Cavalli, Giacomo
description Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.
doi_str_mv 10.1371/journal.pbio.1000013
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292307815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A195013115</galeid><doaj_id>oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3</doaj_id><sourcerecordid>A195013115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</originalsourceid><addsrcrecordid>eNqVk29v0zAQxiMEYmPwDRBEQkLaixafk9jOG6RqMFapYhJ_X1oXx2k9JXGwnWn99rhrgBUhAcmLOI9_9zh3uUuSp0DmkHF4dWVH12M7Hypj50DiBdm95BiKvJhxIYr7d9ZHySPvrwihtKTiYXIEJeRZzvPj5Ov52KtgbHRKscdgu21qm3Sw7VbZropanQZnwsY6vEnVxtkOg-nTNm54hYP2aXx746y3w8a0mOquclvrHycPGmy9fjI9T5LP528_nV3MVpfvlmeL1UzxkoUZUw2KiuVFrnWhMVOIStGyKgWWQAkpgDWVyppaVUzRWogo8pwzFLxWqoTsJHm-9x1a6-VUEy8hJpoRLqCIxHJP1Bav5OBMh24rLRp5K1i3luiCUa2WomAVJ5Qj1ZgzDggoQIsaGOdlXWfR6_V02lh1ula6Dw7bA9PDnd5s5NpeS8ooUMaiweneYPNb2MViJXcaIVnBgefXu9ReToc5-23UPsjOeKXbWHptRy8ZE4xSRv4KUiCcR-MIvtiDa4zZmr6x8SPVDpYLKIvYQHBbsPkfqHjXujPK9roxUT8IOD0IiEzQN2GNo_dy-fHDf7Dv_529_HLI5ntWxVb0Tjc_qwtE7ublR2_I3bzIaV5i2LO7P_RX0DQg2XcXQRAa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21077003</pqid></control><display><type>article</type><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><source>PLoS (Open access)</source><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo</creator><contributor>Kingston, Robert</contributor><creatorcontrib>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo ; Kingston, Robert</creatorcontrib><description>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000013</identifier><identifier>PMID: 19143474</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biochemistry, Molecular Biology ; Cell Biology ; Cell division ; Chromatin ; Chromatin - physiology ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone - physiology ; Chromosomes ; Classification ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila Proteins - physiology ; Embryo ; Epigenetics ; Evaluation ; Gene expression ; Gene Expression Regulation, Developmental - physiology ; Genetic aspects ; Genetic regulation ; Genetics ; Genetics and Genomics ; Genomes ; Genomics ; Life Sciences ; Molecular Biology ; Ontology ; Polycomb Repressive Complex 1 ; Properties ; Protein binding ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction</subject><ispartof>PLoS biology, 2009-01, Vol.7 (1), p.e13-e1000013</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Attribution</rights><rights>2009 Schuettengruber et al. 2009</rights><rights>2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</citedby><cites>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</cites><orcidid>0000-0003-3709-3469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621266/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621266/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19143474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00357174$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kingston, Robert</contributor><creatorcontrib>Schuettengruber, Bernd</creatorcontrib><creatorcontrib>Ganapathi, Mythily</creatorcontrib><creatorcontrib>Leblanc, Benjamin</creatorcontrib><creatorcontrib>Portoso, Manuela</creatorcontrib><creatorcontrib>Jaschek, Rami</creatorcontrib><creatorcontrib>Tolhuis, Bas</creatorcontrib><creatorcontrib>van Lohuizen, Maarten</creatorcontrib><creatorcontrib>Tanay, Amos</creatorcontrib><creatorcontrib>Cavalli, Giacomo</creatorcontrib><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Biology</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromatin - physiology</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomal Proteins, Non-Histone - physiology</subject><subject>Chromosomes</subject><subject>Classification</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila Proteins - physiology</subject><subject>Embryo</subject><subject>Epigenetics</subject><subject>Evaluation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Molecular Biology</subject><subject>Ontology</subject><subject>Polycomb Repressive Complex 1</subject><subject>Properties</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk29v0zAQxiMEYmPwDRBEQkLaixafk9jOG6RqMFapYhJ_X1oXx2k9JXGwnWn99rhrgBUhAcmLOI9_9zh3uUuSp0DmkHF4dWVH12M7Hypj50DiBdm95BiKvJhxIYr7d9ZHySPvrwihtKTiYXIEJeRZzvPj5Ov52KtgbHRKscdgu21qm3Sw7VbZropanQZnwsY6vEnVxtkOg-nTNm54hYP2aXx746y3w8a0mOquclvrHycPGmy9fjI9T5LP528_nV3MVpfvlmeL1UzxkoUZUw2KiuVFrnWhMVOIStGyKgWWQAkpgDWVyppaVUzRWogo8pwzFLxWqoTsJHm-9x1a6-VUEy8hJpoRLqCIxHJP1Bav5OBMh24rLRp5K1i3luiCUa2WomAVJ5Qj1ZgzDggoQIsaGOdlXWfR6_V02lh1ula6Dw7bA9PDnd5s5NpeS8ooUMaiweneYPNb2MViJXcaIVnBgefXu9ReToc5-23UPsjOeKXbWHptRy8ZE4xSRv4KUiCcR-MIvtiDa4zZmr6x8SPVDpYLKIvYQHBbsPkfqHjXujPK9roxUT8IOD0IiEzQN2GNo_dy-fHDf7Dv_529_HLI5ntWxVb0Tjc_qwtE7ublR2_I3bzIaV5i2LO7P_RX0DQg2XcXQRAa</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Schuettengruber, Bernd</creator><creator>Ganapathi, Mythily</creator><creator>Leblanc, Benjamin</creator><creator>Portoso, Manuela</creator><creator>Jaschek, Rami</creator><creator>Tolhuis, Bas</creator><creator>van Lohuizen, Maarten</creator><creator>Tanay, Amos</creator><creator>Cavalli, Giacomo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7SS</scope><scope>7TM</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-3709-3469</orcidid></search><sort><creationdate>20090101</creationdate><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><author>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Biology</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromatin - physiology</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomal Proteins, Non-Histone - physiology</topic><topic>Chromosomes</topic><topic>Classification</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila Proteins - physiology</topic><topic>Embryo</topic><topic>Epigenetics</topic><topic>Evaluation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Molecular Biology</topic><topic>Ontology</topic><topic>Polycomb Repressive Complex 1</topic><topic>Properties</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuettengruber, Bernd</creatorcontrib><creatorcontrib>Ganapathi, Mythily</creatorcontrib><creatorcontrib>Leblanc, Benjamin</creatorcontrib><creatorcontrib>Portoso, Manuela</creatorcontrib><creatorcontrib>Jaschek, Rami</creatorcontrib><creatorcontrib>Tolhuis, Bas</creatorcontrib><creatorcontrib>van Lohuizen, Maarten</creatorcontrib><creatorcontrib>Tanay, Amos</creatorcontrib><creatorcontrib>Cavalli, Giacomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuettengruber, Bernd</au><au>Ganapathi, Mythily</au><au>Leblanc, Benjamin</au><au>Portoso, Manuela</au><au>Jaschek, Rami</au><au>Tolhuis, Bas</au><au>van Lohuizen, Maarten</au><au>Tanay, Amos</au><au>Cavalli, Giacomo</au><au>Kingston, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>7</volume><issue>1</issue><spage>e13</spage><epage>e1000013</epage><pages>e13-e1000013</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19143474</pmid><doi>10.1371/journal.pbio.1000013</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3709-3469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2009-01, Vol.7 (1), p.e13-e1000013
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1292307815
source PLoS (Open access); PubMed Central (Open access); MEDLINE; Directory of Open Access Journals; EZB Electronic Journals Library
subjects Animals
Biochemistry, Molecular Biology
Cell Biology
Cell division
Chromatin
Chromatin - physiology
Chromatin Immunoprecipitation
Chromosomal Proteins, Non-Histone - physiology
Chromosomes
Classification
Deoxyribonucleic acid
Developmental Biology
DNA
Drosophila
Drosophila melanogaster - embryology
Drosophila Proteins - physiology
Embryo
Epigenetics
Evaluation
Gene expression
Gene Expression Regulation, Developmental - physiology
Genetic aspects
Genetic regulation
Genetics
Genetics and Genomics
Genomes
Genomics
Life Sciences
Molecular Biology
Ontology
Polycomb Repressive Complex 1
Properties
Protein binding
Proteins
Reverse Transcriptase Polymerase Chain Reaction
title Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20anatomy%20of%20polycomb%20and%20trithorax%20chromatin%20landscapes%20in%20Drosophila%20embryos&rft.jtitle=PLoS%20biology&rft.au=Schuettengruber,%20Bernd&rft.date=2009-01-01&rft.volume=7&rft.issue=1&rft.spage=e13&rft.epage=e1000013&rft.pages=e13-e1000013&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000013&rft_dat=%3Cgale_plos_%3EA195013115%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21077003&rft_id=info:pmid/19143474&rft_galeid=A195013115&rft_doaj_id=oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3&rfr_iscdi=true