Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding protei...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2009-01, Vol.7 (1), p.e13-e1000013 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000013 |
---|---|
container_issue | 1 |
container_start_page | e13 |
container_title | PLoS biology |
container_volume | 7 |
creator | Schuettengruber, Bernd Ganapathi, Mythily Leblanc, Benjamin Portoso, Manuela Jaschek, Rami Tolhuis, Bas van Lohuizen, Maarten Tanay, Amos Cavalli, Giacomo |
description | Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. |
doi_str_mv | 10.1371/journal.pbio.1000013 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292307815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A195013115</galeid><doaj_id>oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3</doaj_id><sourcerecordid>A195013115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</originalsourceid><addsrcrecordid>eNqVk29v0zAQxiMEYmPwDRBEQkLaixafk9jOG6RqMFapYhJ_X1oXx2k9JXGwnWn99rhrgBUhAcmLOI9_9zh3uUuSp0DmkHF4dWVH12M7Hypj50DiBdm95BiKvJhxIYr7d9ZHySPvrwihtKTiYXIEJeRZzvPj5Ov52KtgbHRKscdgu21qm3Sw7VbZropanQZnwsY6vEnVxtkOg-nTNm54hYP2aXx746y3w8a0mOquclvrHycPGmy9fjI9T5LP528_nV3MVpfvlmeL1UzxkoUZUw2KiuVFrnWhMVOIStGyKgWWQAkpgDWVyppaVUzRWogo8pwzFLxWqoTsJHm-9x1a6-VUEy8hJpoRLqCIxHJP1Bav5OBMh24rLRp5K1i3luiCUa2WomAVJ5Qj1ZgzDggoQIsaGOdlXWfR6_V02lh1ula6Dw7bA9PDnd5s5NpeS8ooUMaiweneYPNb2MViJXcaIVnBgefXu9ReToc5-23UPsjOeKXbWHptRy8ZE4xSRv4KUiCcR-MIvtiDa4zZmr6x8SPVDpYLKIvYQHBbsPkfqHjXujPK9roxUT8IOD0IiEzQN2GNo_dy-fHDf7Dv_529_HLI5ntWxVb0Tjc_qwtE7ublR2_I3bzIaV5i2LO7P_RX0DQg2XcXQRAa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21077003</pqid></control><display><type>article</type><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><source>PLoS (Open access)</source><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo</creator><contributor>Kingston, Robert</contributor><creatorcontrib>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo ; Kingston, Robert</creatorcontrib><description>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000013</identifier><identifier>PMID: 19143474</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biochemistry, Molecular Biology ; Cell Biology ; Cell division ; Chromatin ; Chromatin - physiology ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone - physiology ; Chromosomes ; Classification ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila Proteins - physiology ; Embryo ; Epigenetics ; Evaluation ; Gene expression ; Gene Expression Regulation, Developmental - physiology ; Genetic aspects ; Genetic regulation ; Genetics ; Genetics and Genomics ; Genomes ; Genomics ; Life Sciences ; Molecular Biology ; Ontology ; Polycomb Repressive Complex 1 ; Properties ; Protein binding ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction</subject><ispartof>PLoS biology, 2009-01, Vol.7 (1), p.e13-e1000013</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>Attribution</rights><rights>2009 Schuettengruber et al. 2009</rights><rights>2009 Schuettengruber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, et al. (2009) Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos. PLoS Biol 7(1): e1000013. doi:10.1371/journal.pbio.1000013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</citedby><cites>FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</cites><orcidid>0000-0003-3709-3469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621266/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621266/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19143474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00357174$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Kingston, Robert</contributor><creatorcontrib>Schuettengruber, Bernd</creatorcontrib><creatorcontrib>Ganapathi, Mythily</creatorcontrib><creatorcontrib>Leblanc, Benjamin</creatorcontrib><creatorcontrib>Portoso, Manuela</creatorcontrib><creatorcontrib>Jaschek, Rami</creatorcontrib><creatorcontrib>Tolhuis, Bas</creatorcontrib><creatorcontrib>van Lohuizen, Maarten</creatorcontrib><creatorcontrib>Tanay, Amos</creatorcontrib><creatorcontrib>Cavalli, Giacomo</creatorcontrib><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</description><subject>Animals</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cell Biology</subject><subject>Cell division</subject><subject>Chromatin</subject><subject>Chromatin - physiology</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomal Proteins, Non-Histone - physiology</subject><subject>Chromosomes</subject><subject>Classification</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila Proteins - physiology</subject><subject>Embryo</subject><subject>Epigenetics</subject><subject>Evaluation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Genetics</subject><subject>Genetics and Genomics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Molecular Biology</subject><subject>Ontology</subject><subject>Polycomb Repressive Complex 1</subject><subject>Properties</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk29v0zAQxiMEYmPwDRBEQkLaixafk9jOG6RqMFapYhJ_X1oXx2k9JXGwnWn99rhrgBUhAcmLOI9_9zh3uUuSp0DmkHF4dWVH12M7Hypj50DiBdm95BiKvJhxIYr7d9ZHySPvrwihtKTiYXIEJeRZzvPj5Ov52KtgbHRKscdgu21qm3Sw7VbZropanQZnwsY6vEnVxtkOg-nTNm54hYP2aXx746y3w8a0mOquclvrHycPGmy9fjI9T5LP528_nV3MVpfvlmeL1UzxkoUZUw2KiuVFrnWhMVOIStGyKgWWQAkpgDWVyppaVUzRWogo8pwzFLxWqoTsJHm-9x1a6-VUEy8hJpoRLqCIxHJP1Bav5OBMh24rLRp5K1i3luiCUa2WomAVJ5Qj1ZgzDggoQIsaGOdlXWfR6_V02lh1ula6Dw7bA9PDnd5s5NpeS8ooUMaiweneYPNb2MViJXcaIVnBgefXu9ReToc5-23UPsjOeKXbWHptRy8ZE4xSRv4KUiCcR-MIvtiDa4zZmr6x8SPVDpYLKIvYQHBbsPkfqHjXujPK9roxUT8IOD0IiEzQN2GNo_dy-fHDf7Dv_529_HLI5ntWxVb0Tjc_qwtE7ublR2_I3bzIaV5i2LO7P_RX0DQg2XcXQRAa</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Schuettengruber, Bernd</creator><creator>Ganapathi, Mythily</creator><creator>Leblanc, Benjamin</creator><creator>Portoso, Manuela</creator><creator>Jaschek, Rami</creator><creator>Tolhuis, Bas</creator><creator>van Lohuizen, Maarten</creator><creator>Tanay, Amos</creator><creator>Cavalli, Giacomo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7SS</scope><scope>7TM</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-3709-3469</orcidid></search><sort><creationdate>20090101</creationdate><title>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</title><author>Schuettengruber, Bernd ; Ganapathi, Mythily ; Leblanc, Benjamin ; Portoso, Manuela ; Jaschek, Rami ; Tolhuis, Bas ; van Lohuizen, Maarten ; Tanay, Amos ; Cavalli, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c796t-6cfa8b6454ee5ea3caacc29b98a91200516fbc3fdcb6c2d881207476a87dcc913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cell Biology</topic><topic>Cell division</topic><topic>Chromatin</topic><topic>Chromatin - physiology</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomal Proteins, Non-Histone - physiology</topic><topic>Chromosomes</topic><topic>Classification</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila Proteins - physiology</topic><topic>Embryo</topic><topic>Epigenetics</topic><topic>Evaluation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Genetics</topic><topic>Genetics and Genomics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Molecular Biology</topic><topic>Ontology</topic><topic>Polycomb Repressive Complex 1</topic><topic>Properties</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuettengruber, Bernd</creatorcontrib><creatorcontrib>Ganapathi, Mythily</creatorcontrib><creatorcontrib>Leblanc, Benjamin</creatorcontrib><creatorcontrib>Portoso, Manuela</creatorcontrib><creatorcontrib>Jaschek, Rami</creatorcontrib><creatorcontrib>Tolhuis, Bas</creatorcontrib><creatorcontrib>van Lohuizen, Maarten</creatorcontrib><creatorcontrib>Tanay, Amos</creatorcontrib><creatorcontrib>Cavalli, Giacomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuettengruber, Bernd</au><au>Ganapathi, Mythily</au><au>Leblanc, Benjamin</au><au>Portoso, Manuela</au><au>Jaschek, Rami</au><au>Tolhuis, Bas</au><au>van Lohuizen, Maarten</au><au>Tanay, Amos</au><au>Cavalli, Giacomo</au><au>Kingston, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>7</volume><issue>1</issue><spage>e13</spage><epage>e1000013</epage><pages>e13-e1000013</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N-bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19143474</pmid><doi>10.1371/journal.pbio.1000013</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3709-3469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2009-01, Vol.7 (1), p.e13-e1000013 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1292307815 |
source | PLoS (Open access); PubMed Central (Open access); MEDLINE; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Animals Biochemistry, Molecular Biology Cell Biology Cell division Chromatin Chromatin - physiology Chromatin Immunoprecipitation Chromosomal Proteins, Non-Histone - physiology Chromosomes Classification Deoxyribonucleic acid Developmental Biology DNA Drosophila Drosophila melanogaster - embryology Drosophila Proteins - physiology Embryo Epigenetics Evaluation Gene expression Gene Expression Regulation, Developmental - physiology Genetic aspects Genetic regulation Genetics Genetics and Genomics Genomes Genomics Life Sciences Molecular Biology Ontology Polycomb Repressive Complex 1 Properties Protein binding Proteins Reverse Transcriptase Polymerase Chain Reaction |
title | Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20anatomy%20of%20polycomb%20and%20trithorax%20chromatin%20landscapes%20in%20Drosophila%20embryos&rft.jtitle=PLoS%20biology&rft.au=Schuettengruber,%20Bernd&rft.date=2009-01-01&rft.volume=7&rft.issue=1&rft.spage=e13&rft.epage=e1000013&rft.pages=e13-e1000013&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000013&rft_dat=%3Cgale_plos_%3EA195013115%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21077003&rft_id=info:pmid/19143474&rft_galeid=A195013115&rft_doaj_id=oai_doaj_org_article_856b7027a2ea4671a1a81e8d16779dd3&rfr_iscdi=true |