Bayesian estimation of animal movement from archival and satellite tags
The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining lo...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-10, Vol.4 (10), p.e7324-e7324 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e7324 |
---|---|
container_issue | 10 |
container_start_page | e7324 |
container_title | PloS one |
container_volume | 4 |
creator | Sumner, Michael D Wotherspoon, Simon J Hindell, Mark A |
description | The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools. |
doi_str_mv | 10.1371/journal.pone.0007324 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292305731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472850192</galeid><doaj_id>oai_doaj_org_article_0cc93973c2be4e6680b392b5899bb81c</doaj_id><sourcerecordid>A472850192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c725t-3e2b1bf2a5f8d5fe35f01a02a9d49142c1c4f238820cdfaf75d6bba9706afd523</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLwoIXM-azTW6EddF1YGHBr9twmiYzGdpmTNLB_fdmnKoz4sXSizanz3nb8563KJ5jtMC0xm82fgwDdIutH8wCIVRTwh4U51hSMq8Iog-Pns-KJzFuEOJUVNXj4gxLQWgl2Hlx_Q7uTHQwlCYm10Nyfii9LWHIh67s_c70ZkilDb4vIei12-UyDG0ZIZmuc8mUCVbxafHIQhfNs-k-K75-eP_l6uP85vZ6eXV5M9c14WlODWlwYwlwK1puDeUWYUAEZMskZkRjzSyhQhCkWwu25m3VNCBrVIFtOaGz4uVBd9v5qCYPosJEEop4TXEmlgei9bBR25DnCHfKg1O_Cj6sFITkdGcU0lpSWVNNGsNMVQnUUEkaLqRsGoF11no7fW1setPq7ESA7kT09M3g1mrld4rUXHAmssDFJBD89zFbrHoXdfYNBuPHqAhmFcnrvA_IJMoLnRWv_gH_b8LiQK0gz-kG6_Pv6Xy1pnc6J8a6XL9kNRE8q-59fX3SkJlkfqQVjDGq5edP92dvv52yF0fs2kCX1tF34z5n8RRkB1AHH2Mw9o_LGKl94H_PqfaBV1Pgc9uL4w39bZoSTn8CQm77sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292305731</pqid></control><display><type>article</type><title>Bayesian estimation of animal movement from archival and satellite tags</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sumner, Michael D ; Wotherspoon, Simon J ; Hindell, Mark A</creator><contributor>Svensson, Erik I.</contributor><creatorcontrib>Sumner, Michael D ; Wotherspoon, Simon J ; Hindell, Mark A ; Svensson, Erik I.</creatorcontrib><description>The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0007324</identifier><identifier>PMID: 19823684</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animal ecology ; Animal Migration ; Animals ; Arctocephalus australis ; Bayes Theorem ; Bayesian analysis ; Behavior, Animal ; Biogeography ; Decision making ; Ecology ; Ecology/Behavioral Ecology ; Ecology/Marine and Freshwater Ecology ; Ecology/Spatial and Landscape Ecology ; Environmental Monitoring ; Estimates ; Foraging behavior ; Geographic Information Systems ; Leptonychotes ; Light levels ; Makaira indica ; Marine ecology ; Mathematical models ; Microsatellite Repeats ; Models, Statistical ; Monte Carlo Method ; Normal distribution ; Oceanography ; Remote sensing ; Satellite Communications ; Satellite tracking ; Satellites ; Species Specificity ; Statistical mechanics ; Studies ; Tagging ; Tags ; Telemetry - instrumentation ; Uncertainty</subject><ispartof>PloS one, 2009-10, Vol.4 (10), p.e7324-e7324</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Sumner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sumner et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c725t-3e2b1bf2a5f8d5fe35f01a02a9d49142c1c4f238820cdfaf75d6bba9706afd523</citedby><cites>FETCH-LOGICAL-c725t-3e2b1bf2a5f8d5fe35f01a02a9d49142c1c4f238820cdfaf75d6bba9706afd523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758548/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2758548/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19823684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Svensson, Erik I.</contributor><creatorcontrib>Sumner, Michael D</creatorcontrib><creatorcontrib>Wotherspoon, Simon J</creatorcontrib><creatorcontrib>Hindell, Mark A</creatorcontrib><title>Bayesian estimation of animal movement from archival and satellite tags</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools.</description><subject>Algorithms</subject><subject>Animal ecology</subject><subject>Animal Migration</subject><subject>Animals</subject><subject>Arctocephalus australis</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Behavior, Animal</subject><subject>Biogeography</subject><subject>Decision making</subject><subject>Ecology</subject><subject>Ecology/Behavioral Ecology</subject><subject>Ecology/Marine and Freshwater Ecology</subject><subject>Ecology/Spatial and Landscape Ecology</subject><subject>Environmental Monitoring</subject><subject>Estimates</subject><subject>Foraging behavior</subject><subject>Geographic Information Systems</subject><subject>Leptonychotes</subject><subject>Light levels</subject><subject>Makaira indica</subject><subject>Marine ecology</subject><subject>Mathematical models</subject><subject>Microsatellite Repeats</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Normal distribution</subject><subject>Oceanography</subject><subject>Remote sensing</subject><subject>Satellite Communications</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Species Specificity</subject><subject>Statistical mechanics</subject><subject>Studies</subject><subject>Tagging</subject><subject>Tags</subject><subject>Telemetry - instrumentation</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLwoIXM-azTW6EddF1YGHBr9twmiYzGdpmTNLB_fdmnKoz4sXSizanz3nb8563KJ5jtMC0xm82fgwDdIutH8wCIVRTwh4U51hSMq8Iog-Pns-KJzFuEOJUVNXj4gxLQWgl2Hlx_Q7uTHQwlCYm10Nyfii9LWHIh67s_c70ZkilDb4vIei12-UyDG0ZIZmuc8mUCVbxafHIQhfNs-k-K75-eP_l6uP85vZ6eXV5M9c14WlODWlwYwlwK1puDeUWYUAEZMskZkRjzSyhQhCkWwu25m3VNCBrVIFtOaGz4uVBd9v5qCYPosJEEop4TXEmlgei9bBR25DnCHfKg1O_Cj6sFITkdGcU0lpSWVNNGsNMVQnUUEkaLqRsGoF11no7fW1setPq7ESA7kT09M3g1mrld4rUXHAmssDFJBD89zFbrHoXdfYNBuPHqAhmFcnrvA_IJMoLnRWv_gH_b8LiQK0gz-kG6_Pv6Xy1pnc6J8a6XL9kNRE8q-59fX3SkJlkfqQVjDGq5edP92dvv52yF0fs2kCX1tF34z5n8RRkB1AHH2Mw9o_LGKl94H_PqfaBV1Pgc9uL4w39bZoSTn8CQm77sg</recordid><startdate>20091013</startdate><enddate>20091013</enddate><creator>Sumner, Michael D</creator><creator>Wotherspoon, Simon J</creator><creator>Hindell, Mark A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20091013</creationdate><title>Bayesian estimation of animal movement from archival and satellite tags</title><author>Sumner, Michael D ; Wotherspoon, Simon J ; Hindell, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c725t-3e2b1bf2a5f8d5fe35f01a02a9d49142c1c4f238820cdfaf75d6bba9706afd523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Animal ecology</topic><topic>Animal Migration</topic><topic>Animals</topic><topic>Arctocephalus australis</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Behavior, Animal</topic><topic>Biogeography</topic><topic>Decision making</topic><topic>Ecology</topic><topic>Ecology/Behavioral Ecology</topic><topic>Ecology/Marine and Freshwater Ecology</topic><topic>Ecology/Spatial and Landscape Ecology</topic><topic>Environmental Monitoring</topic><topic>Estimates</topic><topic>Foraging behavior</topic><topic>Geographic Information Systems</topic><topic>Leptonychotes</topic><topic>Light levels</topic><topic>Makaira indica</topic><topic>Marine ecology</topic><topic>Mathematical models</topic><topic>Microsatellite Repeats</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Normal distribution</topic><topic>Oceanography</topic><topic>Remote sensing</topic><topic>Satellite Communications</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Species Specificity</topic><topic>Statistical mechanics</topic><topic>Studies</topic><topic>Tagging</topic><topic>Tags</topic><topic>Telemetry - instrumentation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumner, Michael D</creatorcontrib><creatorcontrib>Wotherspoon, Simon J</creatorcontrib><creatorcontrib>Hindell, Mark A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumner, Michael D</au><au>Wotherspoon, Simon J</au><au>Hindell, Mark A</au><au>Svensson, Erik I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian estimation of animal movement from archival and satellite tags</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-10-13</date><risdate>2009</risdate><volume>4</volume><issue>10</issue><spage>e7324</spage><epage>e7324</epage><pages>e7324-e7324</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The reliable estimation of animal location, and its associated error is fundamental to animal ecology. There are many existing techniques for handling location error, but these are often ad hoc or are used in isolation from each other. In this study we present a Bayesian framework for determining location that uses all the data available, is flexible to all tagging techniques, and provides location estimates with built-in measures of uncertainty. Bayesian methods allow the contributions of multiple data sources to be decomposed into manageable components. We illustrate with two examples for two different location methods: satellite tracking and light level geo-location. We show that many of the problems with uncertainty involved are reduced and quantified by our approach. This approach can use any available information, such as existing knowledge of the animal's potential range, light levels or direct location estimates, auxiliary data, and movement models. The approach provides a substantial contribution to the handling uncertainty in archival tag and satellite tracking data using readily available tools.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19823684</pmid><doi>10.1371/journal.pone.0007324</doi><tpages>e7324</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-10, Vol.4 (10), p.e7324-e7324 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292305731 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Animal ecology Animal Migration Animals Arctocephalus australis Bayes Theorem Bayesian analysis Behavior, Animal Biogeography Decision making Ecology Ecology/Behavioral Ecology Ecology/Marine and Freshwater Ecology Ecology/Spatial and Landscape Ecology Environmental Monitoring Estimates Foraging behavior Geographic Information Systems Leptonychotes Light levels Makaira indica Marine ecology Mathematical models Microsatellite Repeats Models, Statistical Monte Carlo Method Normal distribution Oceanography Remote sensing Satellite Communications Satellite tracking Satellites Species Specificity Statistical mechanics Studies Tagging Tags Telemetry - instrumentation Uncertainty |
title | Bayesian estimation of animal movement from archival and satellite tags |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20estimation%20of%20animal%20movement%20from%20archival%20and%20satellite%20tags&rft.jtitle=PloS%20one&rft.au=Sumner,%20Michael%20D&rft.date=2009-10-13&rft.volume=4&rft.issue=10&rft.spage=e7324&rft.epage=e7324&rft.pages=e7324-e7324&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0007324&rft_dat=%3Cgale_plos_%3EA472850192%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292305731&rft_id=info:pmid/19823684&rft_galeid=A472850192&rft_doaj_id=oai_doaj_org_article_0cc93973c2be4e6680b392b5899bb81c&rfr_iscdi=true |