Generation and characterization of the Anp32e-deficient mouse
Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, sugges...
Gespeichert in:
Veröffentlicht in: | PloS one 2010-10, Vol.5 (10), p.e13597-e13597 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e13597 |
---|---|
container_issue | 10 |
container_start_page | e13597 |
container_title | PloS one |
container_volume | 5 |
creator | Reilly, Patrick T Afzal, Samia Wakeham, Andrew Haight, Jillian You-Ten, Annick Zaugg, Kathrin Dembowy, Joanna Young, Ashley Mak, Tak W |
description | Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival.
Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse.
These results provide evidence that significant functional redundancy exists among Anp32 family members. |
doi_str_mv | 10.1371/journal.pone.0013597 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292301282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473841369</galeid><doaj_id>oai_doaj_org_article_50874cf1681d4d16bd483dd7f1563645</doaj_id><sourcerecordid>A473841369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-e900cefe4e82cb65e3bd02bf65e5491c91234b0f92e397d1ead9606baca03ddc3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguLFjPlq2lwoDIuuAwsLft2GNDmZydA2Y9KK-utNne4ylb2QXCScPOc9OSdvlj3FaIVpid_s_RA61awOvoMVQpgWoryXnWNByZITRO-fnM-yRzHuESpoxfnD7IxgxATi7Dx7ewkdBNU73-WqM7neqaB0D8H9Pga9zfsd5OvuQAksDVinHXR93vohwuPsgVVNhCfTvsi-fnj_5eLj8ur6cnOxvlrqsij7JQiENFhgUBFd8wJobRCpbToVTGAtMKGsRlYQoKI0GJQRHPFaaYWoMZousudH3UPjo5w6jxITQSjCpCKJ2BwJ49VeHoJrVfglvXLyb8CHrVShd7oBWaCqZNpiXmHDDOa1YVWqUlpccMpZkbTeTdWGugWjU7tBNTPR-U3ndnLrf0giOBuftMheTQLBfx8g9rJ1UUPTqA7S2GTJCSsJEWOpF_-Qdzc3UVuV3u8661NZPWrKNStpxTDlIlGrO6i0DLROJ5dYl-KzhNezhMT08LPfqiFGufn86f_Z629z9uUJuwPV9Lvom2H0U5yD7Ajq4GMMYG9njJEcTX4zDTmaXE4mT2nPTv_nNunG1fQPKSL1sg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292301282</pqid></control><display><type>article</type><title>Generation and characterization of the Anp32e-deficient mouse</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Reilly, Patrick T ; Afzal, Samia ; Wakeham, Andrew ; Haight, Jillian ; You-Ten, Annick ; Zaugg, Kathrin ; Dembowy, Joanna ; Young, Ashley ; Mak, Tak W</creator><creatorcontrib>Reilly, Patrick T ; Afzal, Samia ; Wakeham, Andrew ; Haight, Jillian ; You-Ten, Annick ; Zaugg, Kathrin ; Dembowy, Joanna ; Young, Ashley ; Mak, Tak W</creatorcontrib><description>Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival.
Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse.
These results provide evidence that significant functional redundancy exists among Anp32 family members.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013597</identifier><identifier>PMID: 21049064</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Apoptosis ; Brain research ; Cell Cycle Proteins - genetics ; Cell growth ; Clonal deletion ; Cloning ; Cytochrome ; Defects ; Deoxyribonucleic acid ; Developmental Biology/Neurodevelopment ; DNA ; Drosophila ; Gastric cancer ; Gene expression ; Genetics and Genomics/Cancer Genetics ; Genetics and Genomics/Disease Models ; Genomes ; Health care networks ; Insects ; Lymphoma ; Medical research ; Mice ; Mice, Inbred C57BL ; Molecular modelling ; Multiple myeloma ; Mutation ; Nerve Tissue Proteins - genetics ; Nuclear Proteins - genetics ; Pathogenesis ; Phosphatase ; Physiology ; Proteins ; Redundancy ; Reverse Transcriptase Polymerase Chain Reaction ; Rodents ; Stomach cancer ; Studies</subject><ispartof>PloS one, 2010-10, Vol.5 (10), p.e13597-e13597</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Reilly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Reilly et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-e900cefe4e82cb65e3bd02bf65e5491c91234b0f92e397d1ead9606baca03ddc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964292/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964292/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21049064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reilly, Patrick T</creatorcontrib><creatorcontrib>Afzal, Samia</creatorcontrib><creatorcontrib>Wakeham, Andrew</creatorcontrib><creatorcontrib>Haight, Jillian</creatorcontrib><creatorcontrib>You-Ten, Annick</creatorcontrib><creatorcontrib>Zaugg, Kathrin</creatorcontrib><creatorcontrib>Dembowy, Joanna</creatorcontrib><creatorcontrib>Young, Ashley</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><title>Generation and characterization of the Anp32e-deficient mouse</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival.
Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse.
These results provide evidence that significant functional redundancy exists among Anp32 family members.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Brain research</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell growth</subject><subject>Clonal deletion</subject><subject>Cloning</subject><subject>Cytochrome</subject><subject>Defects</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology/Neurodevelopment</subject><subject>DNA</subject><subject>Drosophila</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Genetics and Genomics/Cancer Genetics</subject><subject>Genetics and Genomics/Disease Models</subject><subject>Genomes</subject><subject>Health care networks</subject><subject>Insects</subject><subject>Lymphoma</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular modelling</subject><subject>Multiple myeloma</subject><subject>Mutation</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nuclear Proteins - genetics</subject><subject>Pathogenesis</subject><subject>Phosphatase</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Redundancy</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Stomach cancer</subject><subject>Studies</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguLFjPlq2lwoDIuuAwsLft2GNDmZydA2Y9KK-utNne4ylb2QXCScPOc9OSdvlj3FaIVpid_s_RA61awOvoMVQpgWoryXnWNByZITRO-fnM-yRzHuESpoxfnD7IxgxATi7Dx7ewkdBNU73-WqM7neqaB0D8H9Pga9zfsd5OvuQAksDVinHXR93vohwuPsgVVNhCfTvsi-fnj_5eLj8ur6cnOxvlrqsij7JQiENFhgUBFd8wJobRCpbToVTGAtMKGsRlYQoKI0GJQRHPFaaYWoMZousudH3UPjo5w6jxITQSjCpCKJ2BwJ49VeHoJrVfglvXLyb8CHrVShd7oBWaCqZNpiXmHDDOa1YVWqUlpccMpZkbTeTdWGugWjU7tBNTPR-U3ndnLrf0giOBuftMheTQLBfx8g9rJ1UUPTqA7S2GTJCSsJEWOpF_-Qdzc3UVuV3u8661NZPWrKNStpxTDlIlGrO6i0DLROJ5dYl-KzhNezhMT08LPfqiFGufn86f_Z629z9uUJuwPV9Lvom2H0U5yD7Ajq4GMMYG9njJEcTX4zDTmaXE4mT2nPTv_nNunG1fQPKSL1sg</recordid><startdate>20101026</startdate><enddate>20101026</enddate><creator>Reilly, Patrick T</creator><creator>Afzal, Samia</creator><creator>Wakeham, Andrew</creator><creator>Haight, Jillian</creator><creator>You-Ten, Annick</creator><creator>Zaugg, Kathrin</creator><creator>Dembowy, Joanna</creator><creator>Young, Ashley</creator><creator>Mak, Tak W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101026</creationdate><title>Generation and characterization of the Anp32e-deficient mouse</title><author>Reilly, Patrick T ; Afzal, Samia ; Wakeham, Andrew ; Haight, Jillian ; You-Ten, Annick ; Zaugg, Kathrin ; Dembowy, Joanna ; Young, Ashley ; Mak, Tak W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-e900cefe4e82cb65e3bd02bf65e5491c91234b0f92e397d1ead9606baca03ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Brain research</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell growth</topic><topic>Clonal deletion</topic><topic>Cloning</topic><topic>Cytochrome</topic><topic>Defects</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology/Neurodevelopment</topic><topic>DNA</topic><topic>Drosophila</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Genetics and Genomics/Cancer Genetics</topic><topic>Genetics and Genomics/Disease Models</topic><topic>Genomes</topic><topic>Health care networks</topic><topic>Insects</topic><topic>Lymphoma</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular modelling</topic><topic>Multiple myeloma</topic><topic>Mutation</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nuclear Proteins - genetics</topic><topic>Pathogenesis</topic><topic>Phosphatase</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Redundancy</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Stomach cancer</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reilly, Patrick T</creatorcontrib><creatorcontrib>Afzal, Samia</creatorcontrib><creatorcontrib>Wakeham, Andrew</creatorcontrib><creatorcontrib>Haight, Jillian</creatorcontrib><creatorcontrib>You-Ten, Annick</creatorcontrib><creatorcontrib>Zaugg, Kathrin</creatorcontrib><creatorcontrib>Dembowy, Joanna</creatorcontrib><creatorcontrib>Young, Ashley</creatorcontrib><creatorcontrib>Mak, Tak W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reilly, Patrick T</au><au>Afzal, Samia</au><au>Wakeham, Andrew</au><au>Haight, Jillian</au><au>You-Ten, Annick</au><au>Zaugg, Kathrin</au><au>Dembowy, Joanna</au><au>Young, Ashley</au><au>Mak, Tak W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and characterization of the Anp32e-deficient mouse</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-10-26</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>e13597</spage><epage>e13597</epage><pages>e13597-e13597</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival.
Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse.
These results provide evidence that significant functional redundancy exists among Anp32 family members.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21049064</pmid><doi>10.1371/journal.pone.0013597</doi><tpages>e13597</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2010-10, Vol.5 (10), p.e13597-e13597 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292301282 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Apoptosis Brain research Cell Cycle Proteins - genetics Cell growth Clonal deletion Cloning Cytochrome Defects Deoxyribonucleic acid Developmental Biology/Neurodevelopment DNA Drosophila Gastric cancer Gene expression Genetics and Genomics/Cancer Genetics Genetics and Genomics/Disease Models Genomes Health care networks Insects Lymphoma Medical research Mice Mice, Inbred C57BL Molecular modelling Multiple myeloma Mutation Nerve Tissue Proteins - genetics Nuclear Proteins - genetics Pathogenesis Phosphatase Physiology Proteins Redundancy Reverse Transcriptase Polymerase Chain Reaction Rodents Stomach cancer Studies |
title | Generation and characterization of the Anp32e-deficient mouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20characterization%20of%20the%20Anp32e-deficient%20mouse&rft.jtitle=PloS%20one&rft.au=Reilly,%20Patrick%20T&rft.date=2010-10-26&rft.volume=5&rft.issue=10&rft.spage=e13597&rft.epage=e13597&rft.pages=e13597-e13597&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013597&rft_dat=%3Cgale_plos_%3EA473841369%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292301282&rft_id=info:pmid/21049064&rft_galeid=A473841369&rft_doaj_id=oai_doaj_org_article_50874cf1681d4d16bd483dd7f1563645&rfr_iscdi=true |