Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo

Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-08, Vol.5 (8), p.e12017-e12017
Hauptverfasser: Neumann-Staubitz, Petra, Hall, Stephanie L, Kuo, Joseph, Jackson, Antony P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e12017
container_issue 8
container_start_page e12017
container_title PloS one
container_volume 5
creator Neumann-Staubitz, Petra
Hall, Stephanie L
Kuo, Joseph
Jackson, Antony P
description Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.
doi_str_mv 10.1371/journal.pone.0012017
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292289953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473878517</galeid><doaj_id>oai_doaj_org_article_e870181f62ee424eb1aa9159d712be99</doaj_id><sourcerecordid>A473878517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-9fb59d04b73f223f97d974494c00b026084d00aa1b35a523092abfa4c228a7123</originalsourceid><addsrcrecordid>eNqNk9uK2zAQhk1p6W7TvkFpDYWWXjjVwbasm8ISeggsLPR0K8b2OFZwrKwkm6Yv0Neu0mRDXPaiGGRp9M0_0mgmip5TMqdc0HdrM9geuvnW9DgnhDJCxYPokkrOkpwR_vBsfhE9cW5NSMaLPH8cXTAiwoKIy-j3ogULlUerf4HXpo9NE0PscbNFC36wmDjsnfZ6xHhE67EMZoyrDnxrdR-3COMurloI883gofcxuL2CMV0YYueHenfCkxq32NcYKBzD6OLgNurRPI0eNdA5fHb8z6LvHz98W3xOrm8-LRdX10klMuET2ZSZrElaCt4wxhspainSVKYVISVhOSnSmhAAWvIMMsaJZFA2kFaMFSAo47Po5UF32xmnjjl0ijIZCCkzHojlgagNrNXW6g3YnTKg1V-DsSsF1uuqQ4WFILSgTc4QU5ZiSQEkDQcMkUqUMmi9P0Ybyg3WVbixhW4iOt3pdatWZlRMUsGzLAi8OQpYczug82qjXYVdBz2awSmRFpLnKd2Tr_4h77_ckVpBOL_uGxPCVntNdZUKXogiC4Fn0fweKnw1bnQV6q3RwT5xeDtxCIzHn34Fg3Nq-fXL_7M3P6bs6zM2lFrnW2e6YV-obgqmB7CyxjmLzSnHlKh9u9xlQ-3bRR3bJbi9OH-fk9Ndf_A_rXcRaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292289953</pqid></control><display><type>article</type><title>Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Neumann-Staubitz, Petra ; Hall, Stephanie L ; Kuo, Joseph ; Jackson, Antony P</creator><contributor>Gruenberg, Jean</contributor><creatorcontrib>Neumann-Staubitz, Petra ; Hall, Stephanie L ; Kuo, Joseph ; Jackson, Antony P ; Gruenberg, Jean</creatorcontrib><description>Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0012017</identifier><identifier>PMID: 20700507</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Animals ; Biochemistry ; Capillary electrophoresis ; Cattle ; Cell Biology ; Cell Biology/Membranes and Sorting ; Cell cycle ; Cell Line ; Chains ; Clathrin ; Clathrin Heavy Chains - chemistry ; Clathrin Heavy Chains - genetics ; Clathrin Heavy Chains - metabolism ; Comparative analysis ; Cryoelectron Microscopy ; Deactivation ; Electron microscopy ; Endocytosis ; Eukaryotes ; Evolutionary conservation ; Fluorescein-5-isothiocyanate - metabolism ; Glucuronidase - metabolism ; Golgi apparatus ; Humans ; In vivo methods and tests ; Inactivation ; Lymphocytes ; Lysosomes - enzymology ; Mammals ; Membranes ; Models, Molecular ; Muscle proteins ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutation ; Phenotype ; Protein Conformation ; Protein Transport ; Proteins ; Temperature ; Temperature effects ; Temperature-sensitive mutant ; Transferrin - metabolism ; Trends ; Urine ; Vertebrates ; Yeast ; Yeasts</subject><ispartof>PloS one, 2010-08, Vol.5 (8), p.e12017-e12017</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Neumann-Staubitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Neumann-Staubitz et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-9fb59d04b73f223f97d974494c00b026084d00aa1b35a523092abfa4c228a7123</citedby><cites>FETCH-LOGICAL-c757t-9fb59d04b73f223f97d974494c00b026084d00aa1b35a523092abfa4c228a7123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917355/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917355/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20700507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gruenberg, Jean</contributor><creatorcontrib>Neumann-Staubitz, Petra</creatorcontrib><creatorcontrib>Hall, Stephanie L</creatorcontrib><creatorcontrib>Kuo, Joseph</creatorcontrib><creatorcontrib>Jackson, Antony P</creatorcontrib><title>Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.</description><subject>Actin</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Capillary electrophoresis</subject><subject>Cattle</subject><subject>Cell Biology</subject><subject>Cell Biology/Membranes and Sorting</subject><subject>Cell cycle</subject><subject>Cell Line</subject><subject>Chains</subject><subject>Clathrin</subject><subject>Clathrin Heavy Chains - chemistry</subject><subject>Clathrin Heavy Chains - genetics</subject><subject>Clathrin Heavy Chains - metabolism</subject><subject>Comparative analysis</subject><subject>Cryoelectron Microscopy</subject><subject>Deactivation</subject><subject>Electron microscopy</subject><subject>Endocytosis</subject><subject>Eukaryotes</subject><subject>Evolutionary conservation</subject><subject>Fluorescein-5-isothiocyanate - metabolism</subject><subject>Glucuronidase - metabolism</subject><subject>Golgi apparatus</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Inactivation</subject><subject>Lymphocytes</subject><subject>Lysosomes - enzymology</subject><subject>Mammals</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Muscle proteins</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature-sensitive mutant</subject><subject>Transferrin - metabolism</subject><subject>Trends</subject><subject>Urine</subject><subject>Vertebrates</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uK2zAQhk1p6W7TvkFpDYWWXjjVwbasm8ISeggsLPR0K8b2OFZwrKwkm6Yv0Neu0mRDXPaiGGRp9M0_0mgmip5TMqdc0HdrM9geuvnW9DgnhDJCxYPokkrOkpwR_vBsfhE9cW5NSMaLPH8cXTAiwoKIy-j3ogULlUerf4HXpo9NE0PscbNFC36wmDjsnfZ6xHhE67EMZoyrDnxrdR-3COMurloI883gofcxuL2CMV0YYueHenfCkxq32NcYKBzD6OLgNurRPI0eNdA5fHb8z6LvHz98W3xOrm8-LRdX10klMuET2ZSZrElaCt4wxhspainSVKYVISVhOSnSmhAAWvIMMsaJZFA2kFaMFSAo47Po5UF32xmnjjl0ijIZCCkzHojlgagNrNXW6g3YnTKg1V-DsSsF1uuqQ4WFILSgTc4QU5ZiSQEkDQcMkUqUMmi9P0Ybyg3WVbixhW4iOt3pdatWZlRMUsGzLAi8OQpYczug82qjXYVdBz2awSmRFpLnKd2Tr_4h77_ckVpBOL_uGxPCVntNdZUKXogiC4Fn0fweKnw1bnQV6q3RwT5xeDtxCIzHn34Fg3Nq-fXL_7M3P6bs6zM2lFrnW2e6YV-obgqmB7CyxjmLzSnHlKh9u9xlQ-3bRR3bJbi9OH-fk9Ndf_A_rXcRaA</recordid><startdate>20100806</startdate><enddate>20100806</enddate><creator>Neumann-Staubitz, Petra</creator><creator>Hall, Stephanie L</creator><creator>Kuo, Joseph</creator><creator>Jackson, Antony P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20100806</creationdate><title>Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo</title><author>Neumann-Staubitz, Petra ; Hall, Stephanie L ; Kuo, Joseph ; Jackson, Antony P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-9fb59d04b73f223f97d974494c00b026084d00aa1b35a523092abfa4c228a7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actin</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Capillary electrophoresis</topic><topic>Cattle</topic><topic>Cell Biology</topic><topic>Cell Biology/Membranes and Sorting</topic><topic>Cell cycle</topic><topic>Cell Line</topic><topic>Chains</topic><topic>Clathrin</topic><topic>Clathrin Heavy Chains - chemistry</topic><topic>Clathrin Heavy Chains - genetics</topic><topic>Clathrin Heavy Chains - metabolism</topic><topic>Comparative analysis</topic><topic>Cryoelectron Microscopy</topic><topic>Deactivation</topic><topic>Electron microscopy</topic><topic>Endocytosis</topic><topic>Eukaryotes</topic><topic>Evolutionary conservation</topic><topic>Fluorescein-5-isothiocyanate - metabolism</topic><topic>Glucuronidase - metabolism</topic><topic>Golgi apparatus</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Inactivation</topic><topic>Lymphocytes</topic><topic>Lysosomes - enzymology</topic><topic>Mammals</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Muscle proteins</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature-sensitive mutant</topic><topic>Transferrin - metabolism</topic><topic>Trends</topic><topic>Urine</topic><topic>Vertebrates</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumann-Staubitz, Petra</creatorcontrib><creatorcontrib>Hall, Stephanie L</creatorcontrib><creatorcontrib>Kuo, Joseph</creatorcontrib><creatorcontrib>Jackson, Antony P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumann-Staubitz, Petra</au><au>Hall, Stephanie L</au><au>Kuo, Joseph</au><au>Jackson, Antony P</au><au>Gruenberg, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-08-06</date><risdate>2010</risdate><volume>5</volume><issue>8</issue><spage>e12017</spage><epage>e12017</epage><pages>e12017-e12017</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20700507</pmid><doi>10.1371/journal.pone.0012017</doi><tpages>e12017</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-08, Vol.5 (8), p.e12017-e12017
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292289953
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Actin
Animals
Biochemistry
Capillary electrophoresis
Cattle
Cell Biology
Cell Biology/Membranes and Sorting
Cell cycle
Cell Line
Chains
Clathrin
Clathrin Heavy Chains - chemistry
Clathrin Heavy Chains - genetics
Clathrin Heavy Chains - metabolism
Comparative analysis
Cryoelectron Microscopy
Deactivation
Electron microscopy
Endocytosis
Eukaryotes
Evolutionary conservation
Fluorescein-5-isothiocyanate - metabolism
Glucuronidase - metabolism
Golgi apparatus
Humans
In vivo methods and tests
Inactivation
Lymphocytes
Lysosomes - enzymology
Mammals
Membranes
Models, Molecular
Muscle proteins
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
Mutation
Phenotype
Protein Conformation
Protein Transport
Proteins
Temperature
Temperature effects
Temperature-sensitive mutant
Transferrin - metabolism
Trends
Urine
Vertebrates
Yeast
Yeasts
title Characterization of a temperature-sensitive vertebrate clathrin heavy chain mutant as a tool to study clathrin-dependent events in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20temperature-sensitive%20vertebrate%20clathrin%20heavy%20chain%20mutant%20as%20a%20tool%20to%20study%20clathrin-dependent%20events%20in%20vivo&rft.jtitle=PloS%20one&rft.au=Neumann-Staubitz,%20Petra&rft.date=2010-08-06&rft.volume=5&rft.issue=8&rft.spage=e12017&rft.epage=e12017&rft.pages=e12017-e12017&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0012017&rft_dat=%3Cgale_plos_%3EA473878517%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292289953&rft_id=info:pmid/20700507&rft_galeid=A473878517&rft_doaj_id=oai_doaj_org_article_e870181f62ee424eb1aa9159d712be99&rfr_iscdi=true