Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa

A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2010-10, Vol.5 (10), p.e13557
Hauptverfasser: Kang, Yun, Zarzycki-Siek, Jan, Walton, Chad B, Norris, Michael H, Hoang, Tung T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e13557
container_title PloS one
container_volume 5
creator Kang, Yun
Zarzycki-Siek, Jan
Walton, Chad B
Norris, Michael H
Hoang, Tung T
description A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD(-)/fadR(-) double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD(-)/fadR(-) mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.
doi_str_mv 10.1371/journal.pone.0013557
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292229307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A473843602</galeid><doaj_id>oai_doaj_org_article_fcb10ed968cb4395ad972cfae30a93cc</doaj_id><sourcerecordid>A473843602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c723t-806e38baab6b54f5447485d7a0bb9a28f50104691d0b64db720bf950ff527e383</originalsourceid><addsrcrecordid>eNqNk11rVDEQhg-i2Fr9B6IBQfFi15zkfN4IS7W6UKn4dRvmJJPdlGyyJjnFBX-8Wbstu9ILyUVC8rzvJJOZonha0mnJ2_LNpR-DAztde4dTSkte1-294rjsOZs0jPL7e-uj4lGMl5TWvGuah8URK2nFKtocF78_jTaZtUVyBuodAbmxk1M_I3Hj0hITRIxEepeCGcaEJHmijNYY0CUDlmhIaZNVRhGFiwAKkvGOgFPkyoTRopNIjCOfI47Kr7yDSADDuDDOR3hcPNBgIz7ZzSfF97P3304_Ts4vPsxPZ-cT2TKeJh1tkHcDwNAMdaXrqmqrrlYt0GHogXW6pvk9TV8qOjSVGlpGB93XVOuatVnJT4rn175r66PYJS6KkvWMsZ7TNhPza0J5uBTrYFYQNsKDEX83fFgICMlIi0LLoaSo-qaTQ8X7GlTfMqkBOYWeS5m93u6ijcMKlcypCmAPTA9PnFmKhb8SrK-7jvfZ4NXOIPifI8YkViZKtBYc-jGKrmUl60pWZfLFP-Tdj9tRC8j3N077HFZuPcWsanlX8YayTE3voPJQuDK5BFCbvH8geH0g2JYJ_koLGGMU869f_p-9-HHIvtxjlwg2LaO347ay4iFYXYMy-BgD6tscl1Rse-QmG2LbI2LXI1n2bP9_bkU3TcH_AAOCDdw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292229307</pqid></control><display><type>article</type><title>Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kang, Yun ; Zarzycki-Siek, Jan ; Walton, Chad B ; Norris, Michael H ; Hoang, Tung T</creator><creatorcontrib>Kang, Yun ; Zarzycki-Siek, Jan ; Walton, Chad B ; Norris, Michael H ; Hoang, Tung T</creatorcontrib><description>A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD(-)/fadR(-) double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD(-)/fadR(-) mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0013557</identifier><identifier>PMID: 21042406</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; AMP ; Analysis ; Base Sequence ; Biodegradation ; Bioengineering ; Biosynthesis ; Carbon sources ; Chains ; Cloning ; Coenzyme A Ligases - chemistry ; Coenzyme A Ligases - genetics ; Coenzyme A Ligases - metabolism ; Cystic fibrosis ; Degradation ; Dehydrogenases ; DNA, Bacterial ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; FADD protein ; Fatty acids ; Fatty Acids - metabolism ; Fitness ; Genes ; Genetic aspects ; Genetics and Genomics/Gene Expression ; Genetics and Genomics/Gene Function ; Genomes ; Health aspects ; Homology ; Hydrolysis ; Infections ; Infectious Diseases/Bacterial Infections ; Infectious Diseases/Respiratory Infections ; Kinetics ; Lecithin ; Ligases ; Lipase ; Lipids ; Lungs ; Metabolism ; Microbiology/Microbial Physiology and Metabolism ; Molecular Sequence Data ; Motility ; Mutagenesis ; Mutants ; Mutation ; Nutrients ; Phosphatidylcholine ; Phospholipase ; Phospholipids ; Physical fitness ; Physiological aspects ; Plant engineering ; Proteases ; Proteins ; Pseudomonas ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - enzymology ; Pseudomonas aeruginosa - pathogenicity ; RNA, Messenger - genetics ; Sequence Homology, Amino Acid ; Substrate Specificity ; Surfactants ; Swarming ; Swimming ; Tuberculosis ; Vectors (Biology) ; Virulence ; Virulence (Microbiology) ; Virulence factors</subject><ispartof>PloS one, 2010-10, Vol.5 (10), p.e13557</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>2010 Kang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Kang et al. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c723t-806e38baab6b54f5447485d7a0bb9a28f50104691d0b64db720bf950ff527e383</citedby><cites>FETCH-LOGICAL-c723t-806e38baab6b54f5447485d7a0bb9a28f50104691d0b64db720bf950ff527e383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958839/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958839/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21042406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Yun</creatorcontrib><creatorcontrib>Zarzycki-Siek, Jan</creatorcontrib><creatorcontrib>Walton, Chad B</creatorcontrib><creatorcontrib>Norris, Michael H</creatorcontrib><creatorcontrib>Hoang, Tung T</creatorcontrib><title>Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD(-)/fadR(-) double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD(-)/fadR(-) mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.</description><subject>Amino Acid Sequence</subject><subject>AMP</subject><subject>Analysis</subject><subject>Base Sequence</subject><subject>Biodegradation</subject><subject>Bioengineering</subject><subject>Biosynthesis</subject><subject>Carbon sources</subject><subject>Chains</subject><subject>Cloning</subject><subject>Coenzyme A Ligases - chemistry</subject><subject>Coenzyme A Ligases - genetics</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Cystic fibrosis</subject><subject>Degradation</subject><subject>Dehydrogenases</subject><subject>DNA, Bacterial</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>FADD protein</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fitness</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetics and Genomics/Gene Expression</subject><subject>Genetics and Genomics/Gene Function</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Homology</subject><subject>Hydrolysis</subject><subject>Infections</subject><subject>Infectious Diseases/Bacterial Infections</subject><subject>Infectious Diseases/Respiratory Infections</subject><subject>Kinetics</subject><subject>Lecithin</subject><subject>Ligases</subject><subject>Lipase</subject><subject>Lipids</subject><subject>Lungs</subject><subject>Metabolism</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Motility</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nutrients</subject><subject>Phosphatidylcholine</subject><subject>Phospholipase</subject><subject>Phospholipids</subject><subject>Physical fitness</subject><subject>Physiological aspects</subject><subject>Plant engineering</subject><subject>Proteases</subject><subject>Proteins</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - enzymology</subject><subject>Pseudomonas aeruginosa - pathogenicity</subject><subject>RNA, Messenger - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Surfactants</subject><subject>Swarming</subject><subject>Swimming</subject><subject>Tuberculosis</subject><subject>Vectors (Biology)</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Virulence factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rVDEQhg-i2Fr9B6IBQfFi15zkfN4IS7W6UKn4dRvmJJPdlGyyJjnFBX-8Wbstu9ILyUVC8rzvJJOZonha0mnJ2_LNpR-DAztde4dTSkte1-294rjsOZs0jPL7e-uj4lGMl5TWvGuah8URK2nFKtocF78_jTaZtUVyBuodAbmxk1M_I3Hj0hITRIxEepeCGcaEJHmijNYY0CUDlmhIaZNVRhGFiwAKkvGOgFPkyoTRopNIjCOfI47Kr7yDSADDuDDOR3hcPNBgIz7ZzSfF97P3304_Ts4vPsxPZ-cT2TKeJh1tkHcDwNAMdaXrqmqrrlYt0GHogXW6pvk9TV8qOjSVGlpGB93XVOuatVnJT4rn175r66PYJS6KkvWMsZ7TNhPza0J5uBTrYFYQNsKDEX83fFgICMlIi0LLoaSo-qaTQ8X7GlTfMqkBOYWeS5m93u6ijcMKlcypCmAPTA9PnFmKhb8SrK-7jvfZ4NXOIPifI8YkViZKtBYc-jGKrmUl60pWZfLFP-Tdj9tRC8j3N077HFZuPcWsanlX8YayTE3voPJQuDK5BFCbvH8geH0g2JYJ_koLGGMU869f_p-9-HHIvtxjlwg2LaO347ay4iFYXYMy-BgD6tscl1Rse-QmG2LbI2LXI1n2bP9_bkU3TcH_AAOCDdw</recordid><startdate>20101021</startdate><enddate>20101021</enddate><creator>Kang, Yun</creator><creator>Zarzycki-Siek, Jan</creator><creator>Walton, Chad B</creator><creator>Norris, Michael H</creator><creator>Hoang, Tung T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20101021</creationdate><title>Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa</title><author>Kang, Yun ; Zarzycki-Siek, Jan ; Walton, Chad B ; Norris, Michael H ; Hoang, Tung T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c723t-806e38baab6b54f5447485d7a0bb9a28f50104691d0b64db720bf950ff527e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>AMP</topic><topic>Analysis</topic><topic>Base Sequence</topic><topic>Biodegradation</topic><topic>Bioengineering</topic><topic>Biosynthesis</topic><topic>Carbon sources</topic><topic>Chains</topic><topic>Cloning</topic><topic>Coenzyme A Ligases - chemistry</topic><topic>Coenzyme A Ligases - genetics</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Cystic fibrosis</topic><topic>Degradation</topic><topic>Dehydrogenases</topic><topic>DNA, Bacterial</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>FADD protein</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fitness</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetics and Genomics/Gene Expression</topic><topic>Genetics and Genomics/Gene Function</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Homology</topic><topic>Hydrolysis</topic><topic>Infections</topic><topic>Infectious Diseases/Bacterial Infections</topic><topic>Infectious Diseases/Respiratory Infections</topic><topic>Kinetics</topic><topic>Lecithin</topic><topic>Ligases</topic><topic>Lipase</topic><topic>Lipids</topic><topic>Lungs</topic><topic>Metabolism</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Motility</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nutrients</topic><topic>Phosphatidylcholine</topic><topic>Phospholipase</topic><topic>Phospholipids</topic><topic>Physical fitness</topic><topic>Physiological aspects</topic><topic>Plant engineering</topic><topic>Proteases</topic><topic>Proteins</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - enzymology</topic><topic>Pseudomonas aeruginosa - pathogenicity</topic><topic>RNA, Messenger - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Surfactants</topic><topic>Swarming</topic><topic>Swimming</topic><topic>Tuberculosis</topic><topic>Vectors (Biology)</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yun</creatorcontrib><creatorcontrib>Zarzycki-Siek, Jan</creatorcontrib><creatorcontrib>Walton, Chad B</creatorcontrib><creatorcontrib>Norris, Michael H</creatorcontrib><creatorcontrib>Hoang, Tung T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yun</au><au>Zarzycki-Siek, Jan</au><au>Walton, Chad B</au><au>Norris, Michael H</au><au>Hoang, Tung T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2010-10-21</date><risdate>2010</risdate><volume>5</volume><issue>10</issue><spage>e13557</spage><pages>e13557-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD(-)/fadR(-) double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD(-)/fadR(-) mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21042406</pmid><doi>10.1371/journal.pone.0013557</doi><tpages>e13557</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2010-10, Vol.5 (10), p.e13557
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292229307
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
AMP
Analysis
Base Sequence
Biodegradation
Bioengineering
Biosynthesis
Carbon sources
Chains
Cloning
Coenzyme A Ligases - chemistry
Coenzyme A Ligases - genetics
Coenzyme A Ligases - metabolism
Cystic fibrosis
Degradation
Dehydrogenases
DNA, Bacterial
E coli
Enzymes
Escherichia coli
Escherichia coli - enzymology
FADD protein
Fatty acids
Fatty Acids - metabolism
Fitness
Genes
Genetic aspects
Genetics and Genomics/Gene Expression
Genetics and Genomics/Gene Function
Genomes
Health aspects
Homology
Hydrolysis
Infections
Infectious Diseases/Bacterial Infections
Infectious Diseases/Respiratory Infections
Kinetics
Lecithin
Ligases
Lipase
Lipids
Lungs
Metabolism
Microbiology/Microbial Physiology and Metabolism
Molecular Sequence Data
Motility
Mutagenesis
Mutants
Mutation
Nutrients
Phosphatidylcholine
Phospholipase
Phospholipids
Physical fitness
Physiological aspects
Plant engineering
Proteases
Proteins
Pseudomonas
Pseudomonas aeruginosa
Pseudomonas aeruginosa - enzymology
Pseudomonas aeruginosa - pathogenicity
RNA, Messenger - genetics
Sequence Homology, Amino Acid
Substrate Specificity
Surfactants
Swarming
Swimming
Tuberculosis
Vectors (Biology)
Virulence
Virulence (Microbiology)
Virulence factors
title Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20FadD%20acyl-CoA%20synthetases%20contribute%20to%20differential%20fatty%20acid%20degradation%20and%20virulence%20in%20Pseudomonas%20aeruginosa&rft.jtitle=PloS%20one&rft.au=Kang,%20Yun&rft.date=2010-10-21&rft.volume=5&rft.issue=10&rft.spage=e13557&rft.pages=e13557-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0013557&rft_dat=%3Cgale_plos_%3EA473843602%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292229307&rft_id=info:pmid/21042406&rft_galeid=A473843602&rft_doaj_id=oai_doaj_org_article_fcb10ed968cb4395ad972cfae30a93cc&rfr_iscdi=true