Cadherin-2 controls directional chain migration of cerebellar granule neurons
Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2009-11, Vol.7 (11), p.e1000240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | e1000240 |
container_title | PLoS biology |
container_volume | 7 |
creator | Rieger, Sandra Senghaas, Niklas Walch, Axel Köster, Reinhard W |
description | Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations. |
doi_str_mv | 10.1371/journal.pbio.1000240 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_plos_</sourceid><recordid>TN_cdi_plos_journals_1292223668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_cd5b15441dd84189a2058ad4ecaa8a64</doaj_id><sourcerecordid>19901980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-8f57e00874e08b60f952d70c79d6f951aeea5073154b0f6dc80cfc1a9dd9137f3</originalsourceid><addsrcrecordid>eNpVUcuOEzEQtBCIfcAfIJgfmND2jD32BQlFPFZaxAXOVo_dkzhyxpGdIPH365ABdk9utaururoYe8NhxbuBv9-lU54xrg5jSCsOAKKHZ-yay162g9by-aP6it2UsqsQYYR-ya64McCNhmv2bY1-SznMrWhcmo85xdL4kMkdQ6r0jdtimJt92GQ8d5o0NY4yjRQj5qZ251OkZqZTTnN5xV5MGAu9Xt5b9vPzpx_rr-399y9364_3rZOqO7Z6kgMB6KEn0KOCyUjhB3CD8arWHIlQwtDV_UeYlHca3OQ4Gu9N9T51t-zdhfcQU7HLJYrl1Z4QnVK6Iu4uCJ9wZw857DH_tgmD_dNIeWMxH4OLZJ2XY1Xqufe659qgAKnR9-QQNaq-cn1Y1E7jnryjeiaMT0if_sxhazfplxWDUtVGJegvBC6nUjJN_2Y52HOYfy3Yc5h2CbOOvX2s-39oSa97ACTUn1E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cadherin-2 controls directional chain migration of cerebellar granule neurons</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rieger, Sandra ; Senghaas, Niklas ; Walch, Axel ; Köster, Reinhard W</creator><contributor>Harris, William A.</contributor><creatorcontrib>Rieger, Sandra ; Senghaas, Niklas ; Walch, Axel ; Köster, Reinhard W ; Harris, William A.</creatorcontrib><description>Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000240</identifier><identifier>PMID: 19901980</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biochemistry/Cell Signaling and Trafficking Structures ; Cadherins - genetics ; Cadherins - metabolism ; Cell Adhesion ; Cell adhesion & migration ; Cell Biology/Cell Adhesion ; Cell Biology/Developmental Molecular Mechanisms ; Cell Biology/Neuronal and Glial Cell Biology ; Cell Differentiation ; Cell Movement ; Cell Polarity ; Cellular biology ; Centrosome - metabolism ; Cerebellum - cytology ; Cerebellum - embryology ; Developmental Biology/Cell Differentiation ; Developmental Biology/Developmental Molecular Mechanisms ; Developmental Biology/Neurodevelopment ; Genes, Reporter ; Genetics and Genomics/Gene Function ; Green Fluorescent Proteins ; Immunohistochemistry ; Microscopy, Electron, Transmission ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neuroscience/Neurodevelopment ; Zebrafish ; Zebrafish - embryology ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>PLoS biology, 2009-11, Vol.7 (11), p.e1000240</ispartof><rights>Rieger et al. 2009</rights><rights>2009 Rieger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rieger S, Senghaas N, Walch A, Köster RW (2009) Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons. PLoS Biol 7(11): e1000240. doi:10.1371/journal.pbio.1000240</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-8f57e00874e08b60f952d70c79d6f951aeea5073154b0f6dc80cfc1a9dd9137f3</citedby><cites>FETCH-LOGICAL-c563t-8f57e00874e08b60f952d70c79d6f951aeea5073154b0f6dc80cfc1a9dd9137f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766073/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766073/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19901980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Harris, William A.</contributor><creatorcontrib>Rieger, Sandra</creatorcontrib><creatorcontrib>Senghaas, Niklas</creatorcontrib><creatorcontrib>Walch, Axel</creatorcontrib><creatorcontrib>Köster, Reinhard W</creatorcontrib><title>Cadherin-2 controls directional chain migration of cerebellar granule neurons</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.</description><subject>Animals</subject><subject>Biochemistry/Cell Signaling and Trafficking Structures</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell Adhesion</subject><subject>Cell adhesion & migration</subject><subject>Cell Biology/Cell Adhesion</subject><subject>Cell Biology/Developmental Molecular Mechanisms</subject><subject>Cell Biology/Neuronal and Glial Cell Biology</subject><subject>Cell Differentiation</subject><subject>Cell Movement</subject><subject>Cell Polarity</subject><subject>Cellular biology</subject><subject>Centrosome - metabolism</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - embryology</subject><subject>Developmental Biology/Cell Differentiation</subject><subject>Developmental Biology/Developmental Molecular Mechanisms</subject><subject>Developmental Biology/Neurodevelopment</subject><subject>Genes, Reporter</subject><subject>Genetics and Genomics/Gene Function</subject><subject>Green Fluorescent Proteins</subject><subject>Immunohistochemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neuroscience/Neurodevelopment</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcuOEzEQtBCIfcAfIJgfmND2jD32BQlFPFZaxAXOVo_dkzhyxpGdIPH365ABdk9utaururoYe8NhxbuBv9-lU54xrg5jSCsOAKKHZ-yay162g9by-aP6it2UsqsQYYR-ya64McCNhmv2bY1-SznMrWhcmo85xdL4kMkdQ6r0jdtimJt92GQ8d5o0NY4yjRQj5qZ251OkZqZTTnN5xV5MGAu9Xt5b9vPzpx_rr-399y9364_3rZOqO7Z6kgMB6KEn0KOCyUjhB3CD8arWHIlQwtDV_UeYlHca3OQ4Gu9N9T51t-zdhfcQU7HLJYrl1Z4QnVK6Iu4uCJ9wZw857DH_tgmD_dNIeWMxH4OLZJ2XY1Xqufe659qgAKnR9-QQNaq-cn1Y1E7jnryjeiaMT0if_sxhazfplxWDUtVGJegvBC6nUjJN_2Y52HOYfy3Yc5h2CbOOvX2s-39oSa97ACTUn1E</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Rieger, Sandra</creator><creator>Senghaas, Niklas</creator><creator>Walch, Axel</creator><creator>Köster, Reinhard W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20091101</creationdate><title>Cadherin-2 controls directional chain migration of cerebellar granule neurons</title><author>Rieger, Sandra ; Senghaas, Niklas ; Walch, Axel ; Köster, Reinhard W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-8f57e00874e08b60f952d70c79d6f951aeea5073154b0f6dc80cfc1a9dd9137f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biochemistry/Cell Signaling and Trafficking Structures</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell Adhesion</topic><topic>Cell adhesion & migration</topic><topic>Cell Biology/Cell Adhesion</topic><topic>Cell Biology/Developmental Molecular Mechanisms</topic><topic>Cell Biology/Neuronal and Glial Cell Biology</topic><topic>Cell Differentiation</topic><topic>Cell Movement</topic><topic>Cell Polarity</topic><topic>Cellular biology</topic><topic>Centrosome - metabolism</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - embryology</topic><topic>Developmental Biology/Cell Differentiation</topic><topic>Developmental Biology/Developmental Molecular Mechanisms</topic><topic>Developmental Biology/Neurodevelopment</topic><topic>Genes, Reporter</topic><topic>Genetics and Genomics/Gene Function</topic><topic>Green Fluorescent Proteins</topic><topic>Immunohistochemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neuroscience/Neurodevelopment</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieger, Sandra</creatorcontrib><creatorcontrib>Senghaas, Niklas</creatorcontrib><creatorcontrib>Walch, Axel</creatorcontrib><creatorcontrib>Köster, Reinhard W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieger, Sandra</au><au>Senghaas, Niklas</au><au>Walch, Axel</au><au>Köster, Reinhard W</au><au>Harris, William A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cadherin-2 controls directional chain migration of cerebellar granule neurons</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>7</volume><issue>11</issue><spage>e1000240</spage><pages>e1000240-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19901980</pmid><doi>10.1371/journal.pbio.1000240</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2009-11, Vol.7 (11), p.e1000240 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1292223668 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Biochemistry/Cell Signaling and Trafficking Structures Cadherins - genetics Cadherins - metabolism Cell Adhesion Cell adhesion & migration Cell Biology/Cell Adhesion Cell Biology/Developmental Molecular Mechanisms Cell Biology/Neuronal and Glial Cell Biology Cell Differentiation Cell Movement Cell Polarity Cellular biology Centrosome - metabolism Cerebellum - cytology Cerebellum - embryology Developmental Biology/Cell Differentiation Developmental Biology/Developmental Molecular Mechanisms Developmental Biology/Neurodevelopment Genes, Reporter Genetics and Genomics/Gene Function Green Fluorescent Proteins Immunohistochemistry Microscopy, Electron, Transmission Neurons Neurons - cytology Neurons - physiology Neuroscience/Neurodevelopment Zebrafish Zebrafish - embryology Zebrafish Proteins - genetics Zebrafish Proteins - metabolism |
title | Cadherin-2 controls directional chain migration of cerebellar granule neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cadherin-2%20controls%20directional%20chain%20migration%20of%20cerebellar%20granule%20neurons&rft.jtitle=PLoS%20biology&rft.au=Rieger,%20Sandra&rft.date=2009-11-01&rft.volume=7&rft.issue=11&rft.spage=e1000240&rft.pages=e1000240-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000240&rft_dat=%3Cpubmed_plos_%3E19901980%3C/pubmed_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19901980&rft_doaj_id=oai_doaj_org_article_cd5b15441dd84189a2058ad4ecaa8a64&rfr_iscdi=true |