Carbon dioxide sensing modulates lifespan and physiology in Drosophila
For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2010-04, Vol.8 (4), p.e1000356-e1000356 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1000356 |
---|---|
container_issue | 4 |
container_start_page | e1000356 |
container_title | PLoS biology |
container_volume | 8 |
creator | Poon, Peter C Kuo, Tsung-Han Linford, Nancy J Roman, Gregg Pletcher, Scott D |
description | For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila. |
doi_str_mv | 10.1371/journal.pbio.1000356 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292205480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A225740736</galeid><doaj_id>oai_doaj_org_article_dcbca9ea4f924387882b73fa79309d53</doaj_id><sourcerecordid>A225740736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c666t-a82e72c97760ecf9df0ac79d8a8e53eb75338585645b9fdd373ebcd3bddf4fa23</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYobCP0AQiQVi0eL4ETsbpFFhoNKIkXhtrRs_UleuHeIETf89Lu2MphILUBaOrr97fH18iuJ5hRYV4dXbTZyGAH7Rty4uKoQQYfWD4rxilM25EOzhvf-z4klKG4QwbrB4XJxhRDFGhJ8Xl0sY2hhK7eKN06ZMJiQXunIb9eRhNKn0zprUQygh6LJf75KLPna70oXy_RBT7NfOw9PikQWfzLPjOiu-X374tvw0v7r-uFpeXM1VXdfjHAQ2HKuG8xoZZRttESjeaAHCMGJazggRTLCasraxWhOei0qTVmtLLWAyK14edHsfkzxakGSV74URowJlYnUgdISN7Ae3hWEnIzj5pxCHTsIwOuWN1KpV0BigtsGUiGwUbjmxwBuCGp1HmRXvjqdN7dZoZcI4gD8RPd0Jbi27-EtiwbLafpjXR4Eh_pxMGuXWJWW8h2DilCQnpKlYQ2kmXx3IDvJkLtiYBdWelhcYM04RJ3WmFn-h8qfN1qkYjHW5ftLw5qQhM6O5GTuYUpKrr1_-g_387-z1j1OWHliV45IGY-8MrJDcR_n2HeU-yvIY5dz24r75d0232SW_AZ6v76U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733915944</pqid></control><display><type>article</type><title>Carbon dioxide sensing modulates lifespan and physiology in Drosophila</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Poon, Peter C ; Kuo, Tsung-Han ; Linford, Nancy J ; Roman, Gregg ; Pletcher, Scott D</creator><contributor>Dillin, Andy</contributor><creatorcontrib>Poon, Peter C ; Kuo, Tsung-Han ; Linford, Nancy J ; Roman, Gregg ; Pletcher, Scott D ; Dillin, Andy</creatorcontrib><description>For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.1000356</identifier><identifier>PMID: 20422037</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aging ; Aging - physiology ; Animals ; Animals, Genetically Modified ; Behavior, Animal - physiology ; Caloric Restriction ; Carbon dioxide ; Carbon Dioxide - metabolism ; Developmental Biology/Aging ; Drosophila ; Drosophila melanogaster - anatomy & histology ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Female ; Food ; Genetics ; Health aspects ; Insects ; Longevity - physiology ; Male ; Mutation ; Neurons ; Neurons - physiology ; Neuroscience ; Nutrition ; Odors ; Olfactory Perception - physiology ; Olfactory Receptor Neurons - physiology ; Phenotype ; Physiological aspects ; Regulation ; Smell - physiology ; Stress ; Stress response ; Stress, Physiological ; Yeast</subject><ispartof>PLoS biology, 2010-04, Vol.8 (4), p.e1000356-e1000356</ispartof><rights>COPYRIGHT 2010 Public Library of Science</rights><rights>Poon et al. 2010</rights><rights>2010 Poon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Poon PC, Kuo T-H, Linford NJ, Roman G, Pletcher SD (2010) Carbon Dioxide Sensing Modulates Lifespan and Physiology in Drosophila. PLoS Biol 8(4): e1000356. doi:10.1371/journal.pbio.1000356</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c666t-a82e72c97760ecf9df0ac79d8a8e53eb75338585645b9fdd373ebcd3bddf4fa23</citedby><cites>FETCH-LOGICAL-c666t-a82e72c97760ecf9df0ac79d8a8e53eb75338585645b9fdd373ebcd3bddf4fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857880/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857880/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20422037$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dillin, Andy</contributor><creatorcontrib>Poon, Peter C</creatorcontrib><creatorcontrib>Kuo, Tsung-Han</creatorcontrib><creatorcontrib>Linford, Nancy J</creatorcontrib><creatorcontrib>Roman, Gregg</creatorcontrib><creatorcontrib>Pletcher, Scott D</creatorcontrib><title>Carbon dioxide sensing modulates lifespan and physiology in Drosophila</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.</description><subject>Aging</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Behavior, Animal - physiology</subject><subject>Caloric Restriction</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Developmental Biology/Aging</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - anatomy & histology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Female</subject><subject>Food</subject><subject>Genetics</subject><subject>Health aspects</subject><subject>Insects</subject><subject>Longevity - physiology</subject><subject>Male</subject><subject>Mutation</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Nutrition</subject><subject>Odors</subject><subject>Olfactory Perception - physiology</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Phenotype</subject><subject>Physiological aspects</subject><subject>Regulation</subject><subject>Smell - physiology</subject><subject>Stress</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><subject>Yeast</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYobCP0AQiQVi0eL4ETsbpFFhoNKIkXhtrRs_UleuHeIETf89Lu2MphILUBaOrr97fH18iuJ5hRYV4dXbTZyGAH7Rty4uKoQQYfWD4rxilM25EOzhvf-z4klKG4QwbrB4XJxhRDFGhJ8Xl0sY2hhK7eKN06ZMJiQXunIb9eRhNKn0zprUQygh6LJf75KLPna70oXy_RBT7NfOw9PikQWfzLPjOiu-X374tvw0v7r-uFpeXM1VXdfjHAQ2HKuG8xoZZRttESjeaAHCMGJazggRTLCasraxWhOei0qTVmtLLWAyK14edHsfkzxakGSV74URowJlYnUgdISN7Ae3hWEnIzj5pxCHTsIwOuWN1KpV0BigtsGUiGwUbjmxwBuCGp1HmRXvjqdN7dZoZcI4gD8RPd0Jbi27-EtiwbLafpjXR4Eh_pxMGuXWJWW8h2DilCQnpKlYQ2kmXx3IDvJkLtiYBdWelhcYM04RJ3WmFn-h8qfN1qkYjHW5ftLw5qQhM6O5GTuYUpKrr1_-g_387-z1j1OWHliV45IGY-8MrJDcR_n2HeU-yvIY5dz24r75d0232SW_AZ6v76U</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Poon, Peter C</creator><creator>Kuo, Tsung-Han</creator><creator>Linford, Nancy J</creator><creator>Roman, Gregg</creator><creator>Pletcher, Scott D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20100401</creationdate><title>Carbon dioxide sensing modulates lifespan and physiology in Drosophila</title><author>Poon, Peter C ; Kuo, Tsung-Han ; Linford, Nancy J ; Roman, Gregg ; Pletcher, Scott D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c666t-a82e72c97760ecf9df0ac79d8a8e53eb75338585645b9fdd373ebcd3bddf4fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aging</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Behavior, Animal - physiology</topic><topic>Caloric Restriction</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Developmental Biology/Aging</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - anatomy & histology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Female</topic><topic>Food</topic><topic>Genetics</topic><topic>Health aspects</topic><topic>Insects</topic><topic>Longevity - physiology</topic><topic>Male</topic><topic>Mutation</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Nutrition</topic><topic>Odors</topic><topic>Olfactory Perception - physiology</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Phenotype</topic><topic>Physiological aspects</topic><topic>Regulation</topic><topic>Smell - physiology</topic><topic>Stress</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poon, Peter C</creatorcontrib><creatorcontrib>Kuo, Tsung-Han</creatorcontrib><creatorcontrib>Linford, Nancy J</creatorcontrib><creatorcontrib>Roman, Gregg</creatorcontrib><creatorcontrib>Pletcher, Scott D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poon, Peter C</au><au>Kuo, Tsung-Han</au><au>Linford, Nancy J</au><au>Roman, Gregg</au><au>Pletcher, Scott D</au><au>Dillin, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dioxide sensing modulates lifespan and physiology in Drosophila</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>8</volume><issue>4</issue><spage>e1000356</spage><epage>e1000356</epage><pages>e1000356-e1000356</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20422037</pmid><doi>10.1371/journal.pbio.1000356</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2010-04, Vol.8 (4), p.e1000356-e1000356 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1292205480 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Aging Aging - physiology Animals Animals, Genetically Modified Behavior, Animal - physiology Caloric Restriction Carbon dioxide Carbon Dioxide - metabolism Developmental Biology/Aging Drosophila Drosophila melanogaster - anatomy & histology Drosophila melanogaster - physiology Drosophila Proteins - genetics Drosophila Proteins - metabolism Female Food Genetics Health aspects Insects Longevity - physiology Male Mutation Neurons Neurons - physiology Neuroscience Nutrition Odors Olfactory Perception - physiology Olfactory Receptor Neurons - physiology Phenotype Physiological aspects Regulation Smell - physiology Stress Stress response Stress, Physiological Yeast |
title | Carbon dioxide sensing modulates lifespan and physiology in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dioxide%20sensing%20modulates%20lifespan%20and%20physiology%20in%20Drosophila&rft.jtitle=PLoS%20biology&rft.au=Poon,%20Peter%20C&rft.date=2010-04-01&rft.volume=8&rft.issue=4&rft.spage=e1000356&rft.epage=e1000356&rft.pages=e1000356-e1000356&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.1000356&rft_dat=%3Cgale_plos_%3EA225740736%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733915944&rft_id=info:pmid/20422037&rft_galeid=A225740736&rft_doaj_id=oai_doaj_org_article_dcbca9ea4f924387882b73fa79309d53&rfr_iscdi=true |