Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)

Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-12, Vol.4 (12), p.e8288-e8288
Hauptverfasser: Jawaid, Safdar, Seidle, Heather, Zhou, Weidong, Abdirahman, Hafsa, Abadeer, Maher, Hix, Joseph H, van Hoek, Monique L, Couch, Robin D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e8288
container_issue 12
container_start_page e8288
container_title PloS one
container_volume 4
creator Jawaid, Safdar
Seidle, Heather
Zhou, Weidong
Abdirahman, Hafsa
Abadeer, Maher
Hix, Joseph H
van Hoek, Monique L
Couch, Robin D
description Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.
doi_str_mv 10.1371/journal.pone.0008288
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292202419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472770281</galeid><doaj_id>oai_doaj_org_article_6451db2cede94690b0d6693703a99824</doaj_id><sourcerecordid>A472770281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</originalsourceid><addsrcrecordid>eNqNk21v0zAQxyMEYmPwDRBEQhrsRYqfYidvkKaxQcXQEE9vratzbTylcbEd1PIV-NK4azetCAGKoiTn3_1j_-8uyx5TMqJc0ZeXbvA9dKOF63FECKlYVd3J9mnNWSEZ4Xdvve9lD0K4JKTklZT3sz1GCKVlrfazn-9sj9Ga3LTgwUT09gdE6_oc-iZftC6k2-Ns6DZRN81ji_mZh97YgF0HeUxrHvtgQ06LBt1yVbwulqtu6FzAvCw2IhAx99gMJjob3Bw9pMUX708_5GHVxzZ9HT3M7k2hC_ho-zzIvpydfj55W5xfvBmfHJ8XRjEZi7qGUsGEMUDWEF5TpajiCmAqhGGcUcalSgxMODdlhSWtFDBFSsZBSCH5QfZ0o7tIO9RbH4OmrGaMMJFcO8jGG6JxcKkX3s7Br7QDq68Czs80-ORah1qKkjYTZrDBWsiaTEgjZc0V4VDXFRNJ69X2b8Nkjo3BPnrodkR3V3rb6pn7rpmqKsZUEni-FfDu24Ah6rkNZm19j24IWgkhVSps9W-Sp8YRXK4tOPwryWjSlFe7f_Yb-Ge_RhtqBskS209dOolJV4Nza1KDTm2KHwvFlCKsoinhaCchMRGXcQZDCHr86eP_sxdfd9nDW2yL0MU2uG5Y927YBcUGNN6F4HF6UxBK9Hq-rs-p1_Olt_OV0p7cLuZN0vVA8V-7kiDa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292202419</pqid></control><display><type>article</type><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D</creator><contributor>Gerrard, Juliet Ann</contributor><creatorcontrib>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D ; Gerrard, Juliet Ann</creatorcontrib><description>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0008288</identifier><identifier>PMID: 20011597</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject><![CDATA[Aldose-Ketose Isomerases - chemistry ; Aldose-Ketose Isomerases - genetics ; Aldose-Ketose Isomerases - isolation & purification ; Aldose-Ketose Isomerases - metabolism ; Anti-Infective Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Biochemistry ; Biochemistry/Biocatalysis ; Biochemistry/Drug Discovery ; Biochemistry/Protein Chemistry ; Biosynthesis ; Brucella ; Butadienes - chemistry ; Cations, Divalent - pharmacology ; Cells (Biology) ; Chromatography ; Cloning ; Cloning, Molecular ; D-Xylulose 5-phosphate ; Drug development ; E coli ; Enzymes ; Epidemics ; Escherichia coli ; Fosfomycin - analogs & derivatives ; Fosfomycin - pharmacology ; Fosmidomycin ; Francisella - drug effects ; Francisella - enzymology ; Francisella - genetics ; Francisella - growth & development ; Francisella tularensis ; Hemiterpenes - biosynthesis ; Hemiterpenes - chemistry ; High-Throughput Screening Assays ; Infectious diseases ; Inhibition ; Isoprene ; Kinases ; Kinetics ; Mammalian cells ; Mass spectrometry ; Mass spectroscopy ; Metabolic flux ; Metabolic Networks and Pathways - drug effects ; Metabolism ; Mevalonate pathway ; Mevalonic acid ; Microbial drug resistance ; Microbial Sensitivity Tests ; Monosaccharides ; Mortality ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - isolation & purification ; Multienzyme Complexes - metabolism ; Mutants ; Mycobacterium tuberculosis ; Outbreaks ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - isolation & purification ; Oxidoreductases - metabolism ; Pentanes - chemistry ; Phosphates ; Phosphorylation ; Phosphorylation - drug effects ; Physiological aspects ; Post-translation ; Protein Structure, Tertiary ; Proteins ; Recombinant Proteins - isolation & purification ; Reductoisomerase ; Signal transduction ; Structural Homology, Protein ; Substrate Specificity - drug effects ; Synechocystis ; Titanium dioxide ; Tuberculosis ; Vaccines ; Xylulose]]></subject><ispartof>PloS one, 2009-12, Vol.4 (12), p.e8288-e8288</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Jawaid et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jawaid et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788227/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788227/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20011597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gerrard, Juliet Ann</contributor><creatorcontrib>Jawaid, Safdar</creatorcontrib><creatorcontrib>Seidle, Heather</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Abdirahman, Hafsa</creatorcontrib><creatorcontrib>Abadeer, Maher</creatorcontrib><creatorcontrib>Hix, Joseph H</creatorcontrib><creatorcontrib>van Hoek, Monique L</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</description><subject>Aldose-Ketose Isomerases - chemistry</subject><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Aldose-Ketose Isomerases - isolation &amp; purification</subject><subject>Aldose-Ketose Isomerases - metabolism</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biochemistry/Biocatalysis</subject><subject>Biochemistry/Drug Discovery</subject><subject>Biochemistry/Protein Chemistry</subject><subject>Biosynthesis</subject><subject>Brucella</subject><subject>Butadienes - chemistry</subject><subject>Cations, Divalent - pharmacology</subject><subject>Cells (Biology)</subject><subject>Chromatography</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>D-Xylulose 5-phosphate</subject><subject>Drug development</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Escherichia coli</subject><subject>Fosfomycin - analogs &amp; derivatives</subject><subject>Fosfomycin - pharmacology</subject><subject>Fosmidomycin</subject><subject>Francisella - drug effects</subject><subject>Francisella - enzymology</subject><subject>Francisella - genetics</subject><subject>Francisella - growth &amp; development</subject><subject>Francisella tularensis</subject><subject>Hemiterpenes - biosynthesis</subject><subject>Hemiterpenes - chemistry</subject><subject>High-Throughput Screening Assays</subject><subject>Infectious diseases</subject><subject>Inhibition</subject><subject>Isoprene</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Mammalian cells</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolic flux</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolism</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Microbial drug resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Monosaccharides</subject><subject>Mortality</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - isolation &amp; purification</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutants</subject><subject>Mycobacterium tuberculosis</subject><subject>Outbreaks</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - isolation &amp; purification</subject><subject>Oxidoreductases - metabolism</subject><subject>Pentanes - chemistry</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Physiological aspects</subject><subject>Post-translation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Reductoisomerase</subject><subject>Signal transduction</subject><subject>Structural Homology, Protein</subject><subject>Substrate Specificity - drug effects</subject><subject>Synechocystis</subject><subject>Titanium dioxide</subject><subject>Tuberculosis</subject><subject>Vaccines</subject><subject>Xylulose</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v0zAQxyMEYmPwDRBEQhrsRYqfYidvkKaxQcXQEE9vratzbTylcbEd1PIV-NK4azetCAGKoiTn3_1j_-8uyx5TMqJc0ZeXbvA9dKOF63FECKlYVd3J9mnNWSEZ4Xdvve9lD0K4JKTklZT3sz1GCKVlrfazn-9sj9Ga3LTgwUT09gdE6_oc-iZftC6k2-Ns6DZRN81ji_mZh97YgF0HeUxrHvtgQ06LBt1yVbwulqtu6FzAvCw2IhAx99gMJjob3Bw9pMUX708_5GHVxzZ9HT3M7k2hC_ho-zzIvpydfj55W5xfvBmfHJ8XRjEZi7qGUsGEMUDWEF5TpajiCmAqhGGcUcalSgxMODdlhSWtFDBFSsZBSCH5QfZ0o7tIO9RbH4OmrGaMMJFcO8jGG6JxcKkX3s7Br7QDq68Czs80-ORah1qKkjYTZrDBWsiaTEgjZc0V4VDXFRNJ69X2b8Nkjo3BPnrodkR3V3rb6pn7rpmqKsZUEni-FfDu24Ah6rkNZm19j24IWgkhVSps9W-Sp8YRXK4tOPwryWjSlFe7f_Yb-Ge_RhtqBskS209dOolJV4Nza1KDTm2KHwvFlCKsoinhaCchMRGXcQZDCHr86eP_sxdfd9nDW2yL0MU2uG5Y927YBcUGNN6F4HF6UxBK9Hq-rs-p1_Olt_OV0p7cLuZN0vVA8V-7kiDa</recordid><startdate>20091214</startdate><enddate>20091214</enddate><creator>Jawaid, Safdar</creator><creator>Seidle, Heather</creator><creator>Zhou, Weidong</creator><creator>Abdirahman, Hafsa</creator><creator>Abadeer, Maher</creator><creator>Hix, Joseph H</creator><creator>van Hoek, Monique L</creator><creator>Couch, Robin D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7T7</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20091214</creationdate><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><author>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aldose-Ketose Isomerases - chemistry</topic><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Aldose-Ketose Isomerases - isolation &amp; purification</topic><topic>Aldose-Ketose Isomerases - metabolism</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biochemistry/Biocatalysis</topic><topic>Biochemistry/Drug Discovery</topic><topic>Biochemistry/Protein Chemistry</topic><topic>Biosynthesis</topic><topic>Brucella</topic><topic>Butadienes - chemistry</topic><topic>Cations, Divalent - pharmacology</topic><topic>Cells (Biology)</topic><topic>Chromatography</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>D-Xylulose 5-phosphate</topic><topic>Drug development</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Escherichia coli</topic><topic>Fosfomycin - analogs &amp; derivatives</topic><topic>Fosfomycin - pharmacology</topic><topic>Fosmidomycin</topic><topic>Francisella - drug effects</topic><topic>Francisella - enzymology</topic><topic>Francisella - genetics</topic><topic>Francisella - growth &amp; development</topic><topic>Francisella tularensis</topic><topic>Hemiterpenes - biosynthesis</topic><topic>Hemiterpenes - chemistry</topic><topic>High-Throughput Screening Assays</topic><topic>Infectious diseases</topic><topic>Inhibition</topic><topic>Isoprene</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Mammalian cells</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolic flux</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolism</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Microbial drug resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Monosaccharides</topic><topic>Mortality</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - isolation &amp; purification</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutants</topic><topic>Mycobacterium tuberculosis</topic><topic>Outbreaks</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - isolation &amp; purification</topic><topic>Oxidoreductases - metabolism</topic><topic>Pentanes - chemistry</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Physiological aspects</topic><topic>Post-translation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Reductoisomerase</topic><topic>Signal transduction</topic><topic>Structural Homology, Protein</topic><topic>Substrate Specificity - drug effects</topic><topic>Synechocystis</topic><topic>Titanium dioxide</topic><topic>Tuberculosis</topic><topic>Vaccines</topic><topic>Xylulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jawaid, Safdar</creatorcontrib><creatorcontrib>Seidle, Heather</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Abdirahman, Hafsa</creatorcontrib><creatorcontrib>Abadeer, Maher</creatorcontrib><creatorcontrib>Hix, Joseph H</creatorcontrib><creatorcontrib>van Hoek, Monique L</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jawaid, Safdar</au><au>Seidle, Heather</au><au>Zhou, Weidong</au><au>Abdirahman, Hafsa</au><au>Abadeer, Maher</au><au>Hix, Joseph H</au><au>van Hoek, Monique L</au><au>Couch, Robin D</au><au>Gerrard, Juliet Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-12-14</date><risdate>2009</risdate><volume>4</volume><issue>12</issue><spage>e8288</spage><epage>e8288</epage><pages>e8288-e8288</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20011597</pmid><doi>10.1371/journal.pone.0008288</doi><tpages>e8288</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-12, Vol.4 (12), p.e8288-e8288
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292202419
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Aldose-Ketose Isomerases - chemistry
Aldose-Ketose Isomerases - genetics
Aldose-Ketose Isomerases - isolation & purification
Aldose-Ketose Isomerases - metabolism
Anti-Infective Agents - pharmacology
Antibiotic resistance
Antibiotics
Bacteria
Biochemistry
Biochemistry/Biocatalysis
Biochemistry/Drug Discovery
Biochemistry/Protein Chemistry
Biosynthesis
Brucella
Butadienes - chemistry
Cations, Divalent - pharmacology
Cells (Biology)
Chromatography
Cloning
Cloning, Molecular
D-Xylulose 5-phosphate
Drug development
E coli
Enzymes
Epidemics
Escherichia coli
Fosfomycin - analogs & derivatives
Fosfomycin - pharmacology
Fosmidomycin
Francisella - drug effects
Francisella - enzymology
Francisella - genetics
Francisella - growth & development
Francisella tularensis
Hemiterpenes - biosynthesis
Hemiterpenes - chemistry
High-Throughput Screening Assays
Infectious diseases
Inhibition
Isoprene
Kinases
Kinetics
Mammalian cells
Mass spectrometry
Mass spectroscopy
Metabolic flux
Metabolic Networks and Pathways - drug effects
Metabolism
Mevalonate pathway
Mevalonic acid
Microbial drug resistance
Microbial Sensitivity Tests
Monosaccharides
Mortality
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - isolation & purification
Multienzyme Complexes - metabolism
Mutants
Mycobacterium tuberculosis
Outbreaks
Oxidoreductases - chemistry
Oxidoreductases - genetics
Oxidoreductases - isolation & purification
Oxidoreductases - metabolism
Pentanes - chemistry
Phosphates
Phosphorylation
Phosphorylation - drug effects
Physiological aspects
Post-translation
Protein Structure, Tertiary
Proteins
Recombinant Proteins - isolation & purification
Reductoisomerase
Signal transduction
Structural Homology, Protein
Substrate Specificity - drug effects
Synechocystis
Titanium dioxide
Tuberculosis
Vaccines
Xylulose
title Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20characterization%20and%20phosphoregulation%20of%20the%20Francisella%20tularensis%201-deoxy-D-xylulose%205-phosphate%20reductoisomerase%20(MEP%20synthase)&rft.jtitle=PloS%20one&rft.au=Jawaid,%20Safdar&rft.date=2009-12-14&rft.volume=4&rft.issue=12&rft.spage=e8288&rft.epage=e8288&rft.pages=e8288-e8288&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0008288&rft_dat=%3Cgale_plos_%3EA472770281%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292202419&rft_id=info:pmid/20011597&rft_galeid=A472770281&rft_doaj_id=oai_doaj_org_article_6451db2cede94690b0d6693703a99824&rfr_iscdi=true