Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)
Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the ne...
Gespeichert in:
Veröffentlicht in: | PloS one 2009-12, Vol.4 (12), p.e8288-e8288 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e8288 |
---|---|
container_issue | 12 |
container_start_page | e8288 |
container_title | PloS one |
container_volume | 4 |
creator | Jawaid, Safdar Seidle, Heather Zhou, Weidong Abdirahman, Hafsa Abadeer, Maher Hix, Joseph H van Hoek, Monique L Couch, Robin D |
description | Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis. |
doi_str_mv | 10.1371/journal.pone.0008288 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292202419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472770281</galeid><doaj_id>oai_doaj_org_article_6451db2cede94690b0d6693703a99824</doaj_id><sourcerecordid>A472770281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</originalsourceid><addsrcrecordid>eNqNk21v0zAQxyMEYmPwDRBEQhrsRYqfYidvkKaxQcXQEE9vratzbTylcbEd1PIV-NK4azetCAGKoiTn3_1j_-8uyx5TMqJc0ZeXbvA9dKOF63FECKlYVd3J9mnNWSEZ4Xdvve9lD0K4JKTklZT3sz1GCKVlrfazn-9sj9Ga3LTgwUT09gdE6_oc-iZftC6k2-Ns6DZRN81ji_mZh97YgF0HeUxrHvtgQ06LBt1yVbwulqtu6FzAvCw2IhAx99gMJjob3Bw9pMUX708_5GHVxzZ9HT3M7k2hC_ho-zzIvpydfj55W5xfvBmfHJ8XRjEZi7qGUsGEMUDWEF5TpajiCmAqhGGcUcalSgxMODdlhSWtFDBFSsZBSCH5QfZ0o7tIO9RbH4OmrGaMMJFcO8jGG6JxcKkX3s7Br7QDq68Czs80-ORah1qKkjYTZrDBWsiaTEgjZc0V4VDXFRNJ69X2b8Nkjo3BPnrodkR3V3rb6pn7rpmqKsZUEni-FfDu24Ah6rkNZm19j24IWgkhVSps9W-Sp8YRXK4tOPwryWjSlFe7f_Yb-Ge_RhtqBskS209dOolJV4Nza1KDTm2KHwvFlCKsoinhaCchMRGXcQZDCHr86eP_sxdfd9nDW2yL0MU2uG5Y927YBcUGNN6F4HF6UxBK9Hq-rs-p1_Olt_OV0p7cLuZN0vVA8V-7kiDa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292202419</pqid></control><display><type>article</type><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D</creator><contributor>Gerrard, Juliet Ann</contributor><creatorcontrib>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D ; Gerrard, Juliet Ann</creatorcontrib><description>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0008288</identifier><identifier>PMID: 20011597</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject><![CDATA[Aldose-Ketose Isomerases - chemistry ; Aldose-Ketose Isomerases - genetics ; Aldose-Ketose Isomerases - isolation & purification ; Aldose-Ketose Isomerases - metabolism ; Anti-Infective Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacteria ; Biochemistry ; Biochemistry/Biocatalysis ; Biochemistry/Drug Discovery ; Biochemistry/Protein Chemistry ; Biosynthesis ; Brucella ; Butadienes - chemistry ; Cations, Divalent - pharmacology ; Cells (Biology) ; Chromatography ; Cloning ; Cloning, Molecular ; D-Xylulose 5-phosphate ; Drug development ; E coli ; Enzymes ; Epidemics ; Escherichia coli ; Fosfomycin - analogs & derivatives ; Fosfomycin - pharmacology ; Fosmidomycin ; Francisella - drug effects ; Francisella - enzymology ; Francisella - genetics ; Francisella - growth & development ; Francisella tularensis ; Hemiterpenes - biosynthesis ; Hemiterpenes - chemistry ; High-Throughput Screening Assays ; Infectious diseases ; Inhibition ; Isoprene ; Kinases ; Kinetics ; Mammalian cells ; Mass spectrometry ; Mass spectroscopy ; Metabolic flux ; Metabolic Networks and Pathways - drug effects ; Metabolism ; Mevalonate pathway ; Mevalonic acid ; Microbial drug resistance ; Microbial Sensitivity Tests ; Monosaccharides ; Mortality ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - isolation & purification ; Multienzyme Complexes - metabolism ; Mutants ; Mycobacterium tuberculosis ; Outbreaks ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; Oxidoreductases - isolation & purification ; Oxidoreductases - metabolism ; Pentanes - chemistry ; Phosphates ; Phosphorylation ; Phosphorylation - drug effects ; Physiological aspects ; Post-translation ; Protein Structure, Tertiary ; Proteins ; Recombinant Proteins - isolation & purification ; Reductoisomerase ; Signal transduction ; Structural Homology, Protein ; Substrate Specificity - drug effects ; Synechocystis ; Titanium dioxide ; Tuberculosis ; Vaccines ; Xylulose]]></subject><ispartof>PloS one, 2009-12, Vol.4 (12), p.e8288-e8288</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Jawaid et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Jawaid et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788227/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788227/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20011597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gerrard, Juliet Ann</contributor><creatorcontrib>Jawaid, Safdar</creatorcontrib><creatorcontrib>Seidle, Heather</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Abdirahman, Hafsa</creatorcontrib><creatorcontrib>Abadeer, Maher</creatorcontrib><creatorcontrib>Hix, Joseph H</creatorcontrib><creatorcontrib>van Hoek, Monique L</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</description><subject>Aldose-Ketose Isomerases - chemistry</subject><subject>Aldose-Ketose Isomerases - genetics</subject><subject>Aldose-Ketose Isomerases - isolation & purification</subject><subject>Aldose-Ketose Isomerases - metabolism</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biochemistry/Biocatalysis</subject><subject>Biochemistry/Drug Discovery</subject><subject>Biochemistry/Protein Chemistry</subject><subject>Biosynthesis</subject><subject>Brucella</subject><subject>Butadienes - chemistry</subject><subject>Cations, Divalent - pharmacology</subject><subject>Cells (Biology)</subject><subject>Chromatography</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>D-Xylulose 5-phosphate</subject><subject>Drug development</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Epidemics</subject><subject>Escherichia coli</subject><subject>Fosfomycin - analogs & derivatives</subject><subject>Fosfomycin - pharmacology</subject><subject>Fosmidomycin</subject><subject>Francisella - drug effects</subject><subject>Francisella - enzymology</subject><subject>Francisella - genetics</subject><subject>Francisella - growth & development</subject><subject>Francisella tularensis</subject><subject>Hemiterpenes - biosynthesis</subject><subject>Hemiterpenes - chemistry</subject><subject>High-Throughput Screening Assays</subject><subject>Infectious diseases</subject><subject>Inhibition</subject><subject>Isoprene</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Mammalian cells</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolic flux</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolism</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Microbial drug resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Monosaccharides</subject><subject>Mortality</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - isolation & purification</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutants</subject><subject>Mycobacterium tuberculosis</subject><subject>Outbreaks</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - isolation & purification</subject><subject>Oxidoreductases - metabolism</subject><subject>Pentanes - chemistry</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Physiological aspects</subject><subject>Post-translation</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Reductoisomerase</subject><subject>Signal transduction</subject><subject>Structural Homology, Protein</subject><subject>Substrate Specificity - drug effects</subject><subject>Synechocystis</subject><subject>Titanium dioxide</subject><subject>Tuberculosis</subject><subject>Vaccines</subject><subject>Xylulose</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21v0zAQxyMEYmPwDRBEQhrsRYqfYidvkKaxQcXQEE9vratzbTylcbEd1PIV-NK4azetCAGKoiTn3_1j_-8uyx5TMqJc0ZeXbvA9dKOF63FECKlYVd3J9mnNWSEZ4Xdvve9lD0K4JKTklZT3sz1GCKVlrfazn-9sj9Ga3LTgwUT09gdE6_oc-iZftC6k2-Ns6DZRN81ji_mZh97YgF0HeUxrHvtgQ06LBt1yVbwulqtu6FzAvCw2IhAx99gMJjob3Bw9pMUX708_5GHVxzZ9HT3M7k2hC_ho-zzIvpydfj55W5xfvBmfHJ8XRjEZi7qGUsGEMUDWEF5TpajiCmAqhGGcUcalSgxMODdlhSWtFDBFSsZBSCH5QfZ0o7tIO9RbH4OmrGaMMJFcO8jGG6JxcKkX3s7Br7QDq68Czs80-ORah1qKkjYTZrDBWsiaTEgjZc0V4VDXFRNJ69X2b8Nkjo3BPnrodkR3V3rb6pn7rpmqKsZUEni-FfDu24Ah6rkNZm19j24IWgkhVSps9W-Sp8YRXK4tOPwryWjSlFe7f_Yb-Ge_RhtqBskS209dOolJV4Nza1KDTm2KHwvFlCKsoinhaCchMRGXcQZDCHr86eP_sxdfd9nDW2yL0MU2uG5Y927YBcUGNN6F4HF6UxBK9Hq-rs-p1_Olt_OV0p7cLuZN0vVA8V-7kiDa</recordid><startdate>20091214</startdate><enddate>20091214</enddate><creator>Jawaid, Safdar</creator><creator>Seidle, Heather</creator><creator>Zhou, Weidong</creator><creator>Abdirahman, Hafsa</creator><creator>Abadeer, Maher</creator><creator>Hix, Joseph H</creator><creator>van Hoek, Monique L</creator><creator>Couch, Robin D</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7T7</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20091214</creationdate><title>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</title><author>Jawaid, Safdar ; Seidle, Heather ; Zhou, Weidong ; Abdirahman, Hafsa ; Abadeer, Maher ; Hix, Joseph H ; van Hoek, Monique L ; Couch, Robin D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-99a57ab22ae2d0391771737aaf44c232123679a5ab33c58e5187a270523a46463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aldose-Ketose Isomerases - chemistry</topic><topic>Aldose-Ketose Isomerases - genetics</topic><topic>Aldose-Ketose Isomerases - isolation & purification</topic><topic>Aldose-Ketose Isomerases - metabolism</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biochemistry/Biocatalysis</topic><topic>Biochemistry/Drug Discovery</topic><topic>Biochemistry/Protein Chemistry</topic><topic>Biosynthesis</topic><topic>Brucella</topic><topic>Butadienes - chemistry</topic><topic>Cations, Divalent - pharmacology</topic><topic>Cells (Biology)</topic><topic>Chromatography</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>D-Xylulose 5-phosphate</topic><topic>Drug development</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Epidemics</topic><topic>Escherichia coli</topic><topic>Fosfomycin - analogs & derivatives</topic><topic>Fosfomycin - pharmacology</topic><topic>Fosmidomycin</topic><topic>Francisella - drug effects</topic><topic>Francisella - enzymology</topic><topic>Francisella - genetics</topic><topic>Francisella - growth & development</topic><topic>Francisella tularensis</topic><topic>Hemiterpenes - biosynthesis</topic><topic>Hemiterpenes - chemistry</topic><topic>High-Throughput Screening Assays</topic><topic>Infectious diseases</topic><topic>Inhibition</topic><topic>Isoprene</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Mammalian cells</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolic flux</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolism</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Microbial drug resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Monosaccharides</topic><topic>Mortality</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - isolation & purification</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutants</topic><topic>Mycobacterium tuberculosis</topic><topic>Outbreaks</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - isolation & purification</topic><topic>Oxidoreductases - metabolism</topic><topic>Pentanes - chemistry</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Physiological aspects</topic><topic>Post-translation</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Reductoisomerase</topic><topic>Signal transduction</topic><topic>Structural Homology, Protein</topic><topic>Substrate Specificity - drug effects</topic><topic>Synechocystis</topic><topic>Titanium dioxide</topic><topic>Tuberculosis</topic><topic>Vaccines</topic><topic>Xylulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jawaid, Safdar</creatorcontrib><creatorcontrib>Seidle, Heather</creatorcontrib><creatorcontrib>Zhou, Weidong</creatorcontrib><creatorcontrib>Abdirahman, Hafsa</creatorcontrib><creatorcontrib>Abadeer, Maher</creatorcontrib><creatorcontrib>Hix, Joseph H</creatorcontrib><creatorcontrib>van Hoek, Monique L</creatorcontrib><creatorcontrib>Couch, Robin D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jawaid, Safdar</au><au>Seidle, Heather</au><au>Zhou, Weidong</au><au>Abdirahman, Hafsa</au><au>Abadeer, Maher</au><au>Hix, Joseph H</au><au>van Hoek, Monique L</au><au>Couch, Robin D</au><au>Gerrard, Juliet Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-12-14</date><risdate>2009</risdate><volume>4</volume><issue>12</issue><spage>e8288</spage><epage>e8288</epage><pages>e8288-e8288</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Deliberate and natural outbreaks of infectious disease underscore the necessity of effective vaccines and antimicrobial/antiviral therapeutics. The prevalence of antibiotic resistant strains and the ease by which antibiotic resistant bacteria can be intentionally engineered further highlights the need for continued development of novel antibiotics against new bacterial targets. Isoprenes are a class of molecules fundamentally involved in a variety of crucial biological functions. Mammalian cells utilize the mevalonic acid pathway for isoprene biosynthesis, whereas many bacteria utilize the methylerythritol phosphate (MEP) pathway, making the latter an attractive target for antibiotic development. In this report we describe the cloning and characterization of Francisella tularensis MEP synthase, a MEP pathway enzyme and potential target for antibiotic development. In vitro growth-inhibition assays using fosmidomycin, an inhibitor of MEP synthase, illustrates the effectiveness of MEP pathway inhibition with F. tularensis. To facilitate drug development, F. tularensis MEP synthase was cloned, expressed, purified, and characterized. Enzyme assays produced apparent kinetic constants (K(M)(DXP) = 104 microM, K(M)(NADPH) = 13 microM, k(cat)(DXP) = 2 s(-1), k(cat)(NADPH) = 1.3 s(-1)), an IC(50) for fosmidomycin of 247 nM, and a K(i) for fosmidomycin of 99 nM. The enzyme exhibits a preference for Mg(+2) as a divalent cation. Titanium dioxide chromatography-tandem mass spectrometry identified Ser177 as a site of phosphorylation. S177D and S177E site-directed mutants are inactive, suggesting a mechanism for post-translational control of metabolic flux through the F. tularensis MEP pathway. Overall, our study suggests that MEP synthase is an excellent target for the development of novel antibiotics against F. tularensis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>20011597</pmid><doi>10.1371/journal.pone.0008288</doi><tpages>e8288</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2009-12, Vol.4 (12), p.e8288-e8288 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1292202419 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aldose-Ketose Isomerases - chemistry Aldose-Ketose Isomerases - genetics Aldose-Ketose Isomerases - isolation & purification Aldose-Ketose Isomerases - metabolism Anti-Infective Agents - pharmacology Antibiotic resistance Antibiotics Bacteria Biochemistry Biochemistry/Biocatalysis Biochemistry/Drug Discovery Biochemistry/Protein Chemistry Biosynthesis Brucella Butadienes - chemistry Cations, Divalent - pharmacology Cells (Biology) Chromatography Cloning Cloning, Molecular D-Xylulose 5-phosphate Drug development E coli Enzymes Epidemics Escherichia coli Fosfomycin - analogs & derivatives Fosfomycin - pharmacology Fosmidomycin Francisella - drug effects Francisella - enzymology Francisella - genetics Francisella - growth & development Francisella tularensis Hemiterpenes - biosynthesis Hemiterpenes - chemistry High-Throughput Screening Assays Infectious diseases Inhibition Isoprene Kinases Kinetics Mammalian cells Mass spectrometry Mass spectroscopy Metabolic flux Metabolic Networks and Pathways - drug effects Metabolism Mevalonate pathway Mevalonic acid Microbial drug resistance Microbial Sensitivity Tests Monosaccharides Mortality Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - isolation & purification Multienzyme Complexes - metabolism Mutants Mycobacterium tuberculosis Outbreaks Oxidoreductases - chemistry Oxidoreductases - genetics Oxidoreductases - isolation & purification Oxidoreductases - metabolism Pentanes - chemistry Phosphates Phosphorylation Phosphorylation - drug effects Physiological aspects Post-translation Protein Structure, Tertiary Proteins Recombinant Proteins - isolation & purification Reductoisomerase Signal transduction Structural Homology, Protein Substrate Specificity - drug effects Synechocystis Titanium dioxide Tuberculosis Vaccines Xylulose |
title | Kinetic characterization and phosphoregulation of the Francisella tularensis 1-deoxy-D-xylulose 5-phosphate reductoisomerase (MEP synthase) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20characterization%20and%20phosphoregulation%20of%20the%20Francisella%20tularensis%201-deoxy-D-xylulose%205-phosphate%20reductoisomerase%20(MEP%20synthase)&rft.jtitle=PloS%20one&rft.au=Jawaid,%20Safdar&rft.date=2009-12-14&rft.volume=4&rft.issue=12&rft.spage=e8288&rft.epage=e8288&rft.pages=e8288-e8288&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0008288&rft_dat=%3Cgale_plos_%3EA472770281%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292202419&rft_id=info:pmid/20011597&rft_galeid=A472770281&rft_doaj_id=oai_doaj_org_article_6451db2cede94690b0d6693703a99824&rfr_iscdi=true |