Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast

The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2009-10, Vol.4 (10), p.e7561-e7561
Hauptverfasser: Fang, Zi-An, Wang, Guang-Hui, Chen, Ai-Lian, Li, You-Fang, Liu, Jian-Ping, Li, Yu-Yang, Bolotin-Fukuhara, Monique, Bao, Wei-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e7561
container_issue 10
container_start_page e7561
container_title PloS one
container_volume 4
creator Fang, Zi-An
Wang, Guang-Hui
Chen, Ai-Lian
Li, You-Fang
Liu, Jian-Ping
Li, Yu-Yang
Bolotin-Fukuhara, Monique
Bao, Wei-Guo
description The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.
doi_str_mv 10.1371/journal.pone.0007561
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292131978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472833840</galeid><doaj_id>oai_doaj_org_article_cbf84cc17cb640dcba7914ef3ff0c5d4</doaj_id><sourcerecordid>A472833840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c783t-e54afe6434004f7871080970787412b2aefc2e8e96070e19faaaa3cd2e6489e83</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBEQhriosVfiR0ukKppbBWTKm0MiSvLdY5TT2lcYqdar_njuEtg64TQkos4J895T85XkrzGaIIpxx-vXdc2qp6sXQMThBDPcvwkOcQFJeOcIPr03vkgeeH9NUIZFXn-PDnAhcgywehh8usUGkgvwEcZDz4NLp3fbCto0ulG2VotbG3DNrVN-rXuthto3WqrI1crHaz_lKomnTXeVsuQuiYNS0hPNq7ugo1vztwaer1xH6O0TZVebn2A1U70BygfXibPjKo9vBqeo-Tqy8m347Px-fx0djw9H2suaBhDxpSBnFGGEDNccIwEKjiKJ4bJgigwmoCAIkccAS6MihfVJYk-ogBBR8nbXnddOy-H-nmJSUEwxQXfEbOeKJ26luvWrlS7lU5ZeWtwbSVVG6yuQeqFEUxrzPUiZ6jUC8ULzMBQY5DOSha1Pg_RusUKSg1NaFW9J7r_pbFLWbmNJDynJLZulHzoBZYP3M6m53Jni_2Mv474Bkf2_RCsdT878EGurNdQ16oB13nJKc0LwcmOPPovSTDLOEHiMWAUFXkE3z0A_13aSU9VKlbPNsbFpHW8S1hZHWfY2GifMk4EpYKhu_QHh8gEuAmV6ryXs8uLx7Pz7_vs0T12CaoOSz-MrN8HWQ_q1nnfgvnbBIzkbgX_5Cl3KyiHFYxub-73_c5p2Lm7MTTKSVW11surS4IwRVjQPMs5_Q2yJTYK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292131978</pqid></control><display><type>article</type><title>Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fang, Zi-An ; Wang, Guang-Hui ; Chen, Ai-Lian ; Li, You-Fang ; Liu, Jian-Ping ; Li, Yu-Yang ; Bolotin-Fukuhara, Monique ; Bao, Wei-Guo</creator><contributor>Davis, Dana</contributor><creatorcontrib>Fang, Zi-An ; Wang, Guang-Hui ; Chen, Ai-Lian ; Li, You-Fang ; Liu, Jian-Ping ; Li, Yu-Yang ; Bolotin-Fukuhara, Monique ; Bao, Wei-Guo ; Davis, Dana</creatorcontrib><description>The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0007561</identifier><identifier>PMID: 19855843</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>aerobic conditions ; Amino Acid Sequence ; Anaerobes ; Anaerobiosis ; Analysis ; Baking yeast ; Base Sequence ; Binding sites ; Biochemistry, Molecular Biology ; Bioinformatics ; Biosynthesis ; Cloning ; Cloning, Molecular ; Computational Biology ; Computational Biology - methods ; dissolved oxygen ; Evolution ; Fermentation ; Gene duplication ; Gene expression ; gene expression regulation ; Gene Expression Regulation, Fungal ; Gene sequencing ; Genes ; Genetic engineering ; Genetics and Genomics ; Genome, Fungal ; Genomes ; Genomics ; Hypoxia ; KlROX1 gene ; Kluyveromyces ; Kluyveromyces - genetics ; Kluyveromyces - metabolism ; Kluyveromyces lactis ; Kluyveromyces marxianus var. lactis ; Laboratories ; Life Sciences ; Metabolism ; microbial genetics ; Microbiology and Parasitology ; Microbiology/Microbial Evolution and Genomics ; Microbiology/Microbial Physiology and Metabolism ; Models, Biological ; Molecular Sequence Data ; Oxygen ; Oxygen - chemistry ; Oxygen - metabolism ; Physiological aspects ; Physiology ; Reproduction (copying) ; ROX1 gene ; Saccharomyces ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Sequence Homology, Amino Acid ; species differences ; Stochastic Processes ; Stochasticity ; Synteny ; Yeast ; Yeasts</subject><ispartof>PloS one, 2009-10, Vol.4 (10), p.e7561-e7561</ispartof><rights>COPYRIGHT 2009 Public Library of Science</rights><rights>2009 Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Fang et al. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c783t-e54afe6434004f7871080970787412b2aefc2e8e96070e19faaaa3cd2e6489e83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763219/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2763219/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19855843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00529207$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Davis, Dana</contributor><creatorcontrib>Fang, Zi-An</creatorcontrib><creatorcontrib>Wang, Guang-Hui</creatorcontrib><creatorcontrib>Chen, Ai-Lian</creatorcontrib><creatorcontrib>Li, You-Fang</creatorcontrib><creatorcontrib>Liu, Jian-Ping</creatorcontrib><creatorcontrib>Li, Yu-Yang</creatorcontrib><creatorcontrib>Bolotin-Fukuhara, Monique</creatorcontrib><creatorcontrib>Bao, Wei-Guo</creatorcontrib><title>Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.</description><subject>aerobic conditions</subject><subject>Amino Acid Sequence</subject><subject>Anaerobes</subject><subject>Anaerobiosis</subject><subject>Analysis</subject><subject>Baking yeast</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Biosynthesis</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Computational Biology</subject><subject>Computational Biology - methods</subject><subject>dissolved oxygen</subject><subject>Evolution</subject><subject>Fermentation</subject><subject>Gene duplication</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetics and Genomics</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypoxia</subject><subject>KlROX1 gene</subject><subject>Kluyveromyces</subject><subject>Kluyveromyces - genetics</subject><subject>Kluyveromyces - metabolism</subject><subject>Kluyveromyces lactis</subject><subject>Kluyveromyces marxianus var. lactis</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>microbial genetics</subject><subject>Microbiology and Parasitology</subject><subject>Microbiology/Microbial Evolution and Genomics</subject><subject>Microbiology/Microbial Physiology and Metabolism</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Oxygen</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Reproduction (copying)</subject><subject>ROX1 gene</subject><subject>Saccharomyces</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>species differences</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Synteny</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBEQhriosVfiR0ukKppbBWTKm0MiSvLdY5TT2lcYqdar_njuEtg64TQkos4J895T85XkrzGaIIpxx-vXdc2qp6sXQMThBDPcvwkOcQFJeOcIPr03vkgeeH9NUIZFXn-PDnAhcgywehh8usUGkgvwEcZDz4NLp3fbCto0ulG2VotbG3DNrVN-rXuthto3WqrI1crHaz_lKomnTXeVsuQuiYNS0hPNq7ugo1vztwaer1xH6O0TZVebn2A1U70BygfXibPjKo9vBqeo-Tqy8m347Px-fx0djw9H2suaBhDxpSBnFGGEDNccIwEKjiKJ4bJgigwmoCAIkccAS6MihfVJYk-ogBBR8nbXnddOy-H-nmJSUEwxQXfEbOeKJ26luvWrlS7lU5ZeWtwbSVVG6yuQeqFEUxrzPUiZ6jUC8ULzMBQY5DOSha1Pg_RusUKSg1NaFW9J7r_pbFLWbmNJDynJLZulHzoBZYP3M6m53Jni_2Mv474Bkf2_RCsdT878EGurNdQ16oB13nJKc0LwcmOPPovSTDLOEHiMWAUFXkE3z0A_13aSU9VKlbPNsbFpHW8S1hZHWfY2GifMk4EpYKhu_QHh8gEuAmV6ryXs8uLx7Pz7_vs0T12CaoOSz-MrN8HWQ_q1nnfgvnbBIzkbgX_5Cl3KyiHFYxub-73_c5p2Lm7MTTKSVW11surS4IwRVjQPMs5_Q2yJTYK</recordid><startdate>20091026</startdate><enddate>20091026</enddate><creator>Fang, Zi-An</creator><creator>Wang, Guang-Hui</creator><creator>Chen, Ai-Lian</creator><creator>Li, You-Fang</creator><creator>Liu, Jian-Ping</creator><creator>Li, Yu-Yang</creator><creator>Bolotin-Fukuhara, Monique</creator><creator>Bao, Wei-Guo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20091026</creationdate><title>Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast</title><author>Fang, Zi-An ; Wang, Guang-Hui ; Chen, Ai-Lian ; Li, You-Fang ; Liu, Jian-Ping ; Li, Yu-Yang ; Bolotin-Fukuhara, Monique ; Bao, Wei-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c783t-e54afe6434004f7871080970787412b2aefc2e8e96070e19faaaa3cd2e6489e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>aerobic conditions</topic><topic>Amino Acid Sequence</topic><topic>Anaerobes</topic><topic>Anaerobiosis</topic><topic>Analysis</topic><topic>Baking yeast</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Biosynthesis</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Computational Biology</topic><topic>Computational Biology - methods</topic><topic>dissolved oxygen</topic><topic>Evolution</topic><topic>Fermentation</topic><topic>Gene duplication</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetics and Genomics</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypoxia</topic><topic>KlROX1 gene</topic><topic>Kluyveromyces</topic><topic>Kluyveromyces - genetics</topic><topic>Kluyveromyces - metabolism</topic><topic>Kluyveromyces lactis</topic><topic>Kluyveromyces marxianus var. lactis</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>microbial genetics</topic><topic>Microbiology and Parasitology</topic><topic>Microbiology/Microbial Evolution and Genomics</topic><topic>Microbiology/Microbial Physiology and Metabolism</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Oxygen</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Reproduction (copying)</topic><topic>ROX1 gene</topic><topic>Saccharomyces</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>species differences</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Synteny</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zi-An</creatorcontrib><creatorcontrib>Wang, Guang-Hui</creatorcontrib><creatorcontrib>Chen, Ai-Lian</creatorcontrib><creatorcontrib>Li, You-Fang</creatorcontrib><creatorcontrib>Liu, Jian-Ping</creatorcontrib><creatorcontrib>Li, Yu-Yang</creatorcontrib><creatorcontrib>Bolotin-Fukuhara, Monique</creatorcontrib><creatorcontrib>Bao, Wei-Guo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zi-An</au><au>Wang, Guang-Hui</au><au>Chen, Ai-Lian</au><au>Li, You-Fang</au><au>Liu, Jian-Ping</au><au>Li, Yu-Yang</au><au>Bolotin-Fukuhara, Monique</au><au>Bao, Wei-Guo</au><au>Davis, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2009-10-26</date><risdate>2009</risdate><volume>4</volume><issue>10</issue><spage>e7561</spage><epage>e7561</epage><pages>e7561-e7561</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>19855843</pmid><doi>10.1371/journal.pone.0007561</doi><tpages>e7561</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2009-10, Vol.4 (10), p.e7561-e7561
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292131978
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects aerobic conditions
Amino Acid Sequence
Anaerobes
Anaerobiosis
Analysis
Baking yeast
Base Sequence
Binding sites
Biochemistry, Molecular Biology
Bioinformatics
Biosynthesis
Cloning
Cloning, Molecular
Computational Biology
Computational Biology - methods
dissolved oxygen
Evolution
Fermentation
Gene duplication
Gene expression
gene expression regulation
Gene Expression Regulation, Fungal
Gene sequencing
Genes
Genetic engineering
Genetics and Genomics
Genome, Fungal
Genomes
Genomics
Hypoxia
KlROX1 gene
Kluyveromyces
Kluyveromyces - genetics
Kluyveromyces - metabolism
Kluyveromyces lactis
Kluyveromyces marxianus var. lactis
Laboratories
Life Sciences
Metabolism
microbial genetics
Microbiology and Parasitology
Microbiology/Microbial Evolution and Genomics
Microbiology/Microbial Physiology and Metabolism
Models, Biological
Molecular Sequence Data
Oxygen
Oxygen - chemistry
Oxygen - metabolism
Physiological aspects
Physiology
Reproduction (copying)
ROX1 gene
Saccharomyces
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Sequence Homology, Amino Acid
species differences
Stochastic Processes
Stochasticity
Synteny
Yeast
Yeasts
title Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20Responses%20to%20Oxygen%20Availability%20in%20Kluyveromyces%20lactis:%20an%20Insight%20on%20the%20Evolution%20of%20the%20Oxygen-Responding%20System%20in%20Yeast&rft.jtitle=PloS%20one&rft.au=Fang,%20Zi-An&rft.date=2009-10-26&rft.volume=4&rft.issue=10&rft.spage=e7561&rft.epage=e7561&rft.pages=e7561-e7561&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0007561&rft_dat=%3Cgale_plos_%3EA472833840%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292131978&rft_id=info:pmid/19855843&rft_galeid=A472833840&rft_doaj_id=oai_doaj_org_article_cbf84cc17cb640dcba7914ef3ff0c5d4&rfr_iscdi=true