Lineage-specific restraint of pituitary gonadotroph cell adenoma growth

Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2011-03, Vol.6 (3), p.e17924-e17924
Hauptverfasser: Chesnokova, Vera, Zonis, Svetlana, Zhou, Cuiqi, Ben-Shlomo, Anat, Wawrowsky, Kolja, Toledano, Yoel, Tong, Yunguang, Kovacs, Kalman, Scheithauer, Bernd, Melmed, Shlomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e17924
container_issue 3
container_start_page e17924
container_title PloS one
container_volume 6
creator Chesnokova, Vera
Zonis, Svetlana
Zhou, Cuiqi
Ben-Shlomo, Anat
Wawrowsky, Kolja
Toledano, Yoel
Tong, Yunguang
Kovacs, Kalman
Scheithauer, Bernd
Melmed, Shlomo
description Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and >90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p  =  0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth.
doi_str_mv 10.1371/journal.pone.0017924
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292103179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A476899533</galeid><doaj_id>oai_doaj_org_article_e70866331ac6451fa8a152b8961cc456</doaj_id><sourcerecordid>A476899533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-f74f5dce0f359333db73419112f92e06abc099a43c05abec93ed6b4f656118433</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLwooXMybNR5sbYVl0HRhY8Os2nKZJJ0On6Saprv_ejNNdprIXkouE5DlvTt68WfYSoyUmJX6_daPvoVsOrtdLhHApCvooO8WCFAteIPL4aH2SPQthixAjFedPs5MCU04Fp6fZ1dr2Glq9CINW1liVex2iB9vH3Jl8sHG0EfzvvHU9NC56N2xypbsuh0b3bgd5692vuHmePTHQBf1ims-y758-frv8vFhfX60uL9YLVbIyLkxJDWuURoYwQQhp6pJQLDAujCg04lArJARQohCDWitBdMNrajjjGFeUkLPs9UF36FyQkwdB4kIUGJFkQiJWB6JxsJWDt7vUvnRg5d8N51sJPlrVaalLlPwgBIPilGEDFWBW1JXgWCnKeNL6MN021jud-u6TNd1MdH7S241s3U9JEKec0yTwdhLw7mZMzsqdDXv7oNduDLLiiIgKsTKRb_4hH37cRLWQ-re9ST8Caq8pL2jJKyEY2Zu0fIBKo9E7q1JejE37s4J3s4LERH0bWxhDkKuvX_6fvf4xZ8-P2I2GLm6C68ZoXR_mID2AyrsQvDb3HmMk93G_c0Pu4y6nuKeyV8f_c190l2_yB9BY-Y4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292103179</pqid></control><display><type>article</type><title>Lineage-specific restraint of pituitary gonadotroph cell adenoma growth</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chesnokova, Vera ; Zonis, Svetlana ; Zhou, Cuiqi ; Ben-Shlomo, Anat ; Wawrowsky, Kolja ; Toledano, Yoel ; Tong, Yunguang ; Kovacs, Kalman ; Scheithauer, Bernd ; Melmed, Shlomo</creator><contributor>Fusco, Alfredo</contributor><creatorcontrib>Chesnokova, Vera ; Zonis, Svetlana ; Zhou, Cuiqi ; Ben-Shlomo, Anat ; Wawrowsky, Kolja ; Toledano, Yoel ; Tong, Yunguang ; Kovacs, Kalman ; Scheithauer, Bernd ; Melmed, Shlomo ; Fusco, Alfredo</creatorcontrib><description>Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and &gt;90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p  =  0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0017924</identifier><identifier>PMID: 21464964</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenoma ; Animals ; Benign ; Biomarkers, Tumor - metabolism ; Brain cancer ; Breast cancer ; Carcinoma ; CCAAT-Enhancer-Binding Proteins - metabolism ; Cell cycle ; Cell growth ; Cell Lineage ; Cell Proliferation ; Cellular Senescence ; Clusterin ; Clusterin - genetics ; Clusterin - metabolism ; Cyclin-Dependent Kinase Inhibitor p15 - metabolism ; Cyclin-dependent kinase inhibitor p21 ; Cytokines ; Deoxyribonucleic acid ; DNA ; DNA Damage ; Forkhead Box Protein L2 ; Forkhead Transcription Factors - metabolism ; Gene expression ; Genetic engineering ; Gonadotrophs - metabolism ; Gonadotrophs - pathology ; Growth ; Growth hormone ; Growth hormones ; Humans ; Immune system ; Insulin-like growth factors ; Kinases ; Lung cancer ; Medicine ; Metastasis ; Mice ; Mice, Transgenic ; Models, Biological ; Neoplasm Proteins - metabolism ; p53 Protein ; Phenotype ; Physicians ; Pituitary ; Pituitary (anterior) ; Pituitary gland ; Pituitary Gland - metabolism ; Pituitary Gland - pathology ; Pituitary Neoplasms - metabolism ; Pituitary Neoplasms - pathology ; Pituitary tumor-transforming proteins ; Promoter Regions, Genetic - genetics ; Prostate cancer ; Proteins ; Rodents ; Securin ; Senescence ; Transfection ; Transgenic animals ; Transgenic mice ; Tumorigenesis ; Tumors</subject><ispartof>PloS one, 2011-03, Vol.6 (3), p.e17924-e17924</ispartof><rights>COPYRIGHT 2011 Public Library of Science</rights><rights>2011 Chesnokova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Chesnokova et al. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-f74f5dce0f359333db73419112f92e06abc099a43c05abec93ed6b4f656118433</citedby><cites>FETCH-LOGICAL-c757t-f74f5dce0f359333db73419112f92e06abc099a43c05abec93ed6b4f656118433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064664/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064664/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21464964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Fusco, Alfredo</contributor><creatorcontrib>Chesnokova, Vera</creatorcontrib><creatorcontrib>Zonis, Svetlana</creatorcontrib><creatorcontrib>Zhou, Cuiqi</creatorcontrib><creatorcontrib>Ben-Shlomo, Anat</creatorcontrib><creatorcontrib>Wawrowsky, Kolja</creatorcontrib><creatorcontrib>Toledano, Yoel</creatorcontrib><creatorcontrib>Tong, Yunguang</creatorcontrib><creatorcontrib>Kovacs, Kalman</creatorcontrib><creatorcontrib>Scheithauer, Bernd</creatorcontrib><creatorcontrib>Melmed, Shlomo</creatorcontrib><title>Lineage-specific restraint of pituitary gonadotroph cell adenoma growth</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and &gt;90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p  =  0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth.</description><subject>Adenoma</subject><subject>Animals</subject><subject>Benign</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Brain cancer</subject><subject>Breast cancer</subject><subject>Carcinoma</subject><subject>CCAAT-Enhancer-Binding Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell Lineage</subject><subject>Cell Proliferation</subject><subject>Cellular Senescence</subject><subject>Clusterin</subject><subject>Clusterin - genetics</subject><subject>Clusterin - metabolism</subject><subject>Cyclin-Dependent Kinase Inhibitor p15 - metabolism</subject><subject>Cyclin-dependent kinase inhibitor p21</subject><subject>Cytokines</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>Forkhead Box Protein L2</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Gonadotrophs - metabolism</subject><subject>Gonadotrophs - pathology</subject><subject>Growth</subject><subject>Growth hormone</subject><subject>Growth hormones</subject><subject>Humans</subject><subject>Immune system</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Medicine</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Models, Biological</subject><subject>Neoplasm Proteins - metabolism</subject><subject>p53 Protein</subject><subject>Phenotype</subject><subject>Physicians</subject><subject>Pituitary</subject><subject>Pituitary (anterior)</subject><subject>Pituitary gland</subject><subject>Pituitary Gland - metabolism</subject><subject>Pituitary Gland - pathology</subject><subject>Pituitary Neoplasms - metabolism</subject><subject>Pituitary Neoplasms - pathology</subject><subject>Pituitary tumor-transforming proteins</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Prostate cancer</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Securin</subject><subject>Senescence</subject><subject>Transfection</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLwooXMybNR5sbYVl0HRhY8Os2nKZJJ0On6Saprv_ejNNdprIXkouE5DlvTt68WfYSoyUmJX6_daPvoVsOrtdLhHApCvooO8WCFAteIPL4aH2SPQthixAjFedPs5MCU04Fp6fZ1dr2Glq9CINW1liVex2iB9vH3Jl8sHG0EfzvvHU9NC56N2xypbsuh0b3bgd5692vuHmePTHQBf1ims-y758-frv8vFhfX60uL9YLVbIyLkxJDWuURoYwQQhp6pJQLDAujCg04lArJARQohCDWitBdMNrajjjGFeUkLPs9UF36FyQkwdB4kIUGJFkQiJWB6JxsJWDt7vUvnRg5d8N51sJPlrVaalLlPwgBIPilGEDFWBW1JXgWCnKeNL6MN021jud-u6TNd1MdH7S241s3U9JEKec0yTwdhLw7mZMzsqdDXv7oNduDLLiiIgKsTKRb_4hH37cRLWQ-re9ST8Caq8pL2jJKyEY2Zu0fIBKo9E7q1JejE37s4J3s4LERH0bWxhDkKuvX_6fvf4xZ8-P2I2GLm6C68ZoXR_mID2AyrsQvDb3HmMk93G_c0Pu4y6nuKeyV8f_c190l2_yB9BY-Y4</recordid><startdate>20110325</startdate><enddate>20110325</enddate><creator>Chesnokova, Vera</creator><creator>Zonis, Svetlana</creator><creator>Zhou, Cuiqi</creator><creator>Ben-Shlomo, Anat</creator><creator>Wawrowsky, Kolja</creator><creator>Toledano, Yoel</creator><creator>Tong, Yunguang</creator><creator>Kovacs, Kalman</creator><creator>Scheithauer, Bernd</creator><creator>Melmed, Shlomo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20110325</creationdate><title>Lineage-specific restraint of pituitary gonadotroph cell adenoma growth</title><author>Chesnokova, Vera ; Zonis, Svetlana ; Zhou, Cuiqi ; Ben-Shlomo, Anat ; Wawrowsky, Kolja ; Toledano, Yoel ; Tong, Yunguang ; Kovacs, Kalman ; Scheithauer, Bernd ; Melmed, Shlomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-f74f5dce0f359333db73419112f92e06abc099a43c05abec93ed6b4f656118433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenoma</topic><topic>Animals</topic><topic>Benign</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Brain cancer</topic><topic>Breast cancer</topic><topic>Carcinoma</topic><topic>CCAAT-Enhancer-Binding Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell Lineage</topic><topic>Cell Proliferation</topic><topic>Cellular Senescence</topic><topic>Clusterin</topic><topic>Clusterin - genetics</topic><topic>Clusterin - metabolism</topic><topic>Cyclin-Dependent Kinase Inhibitor p15 - metabolism</topic><topic>Cyclin-dependent kinase inhibitor p21</topic><topic>Cytokines</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>Forkhead Box Protein L2</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Gonadotrophs - metabolism</topic><topic>Gonadotrophs - pathology</topic><topic>Growth</topic><topic>Growth hormone</topic><topic>Growth hormones</topic><topic>Humans</topic><topic>Immune system</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Medicine</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Models, Biological</topic><topic>Neoplasm Proteins - metabolism</topic><topic>p53 Protein</topic><topic>Phenotype</topic><topic>Physicians</topic><topic>Pituitary</topic><topic>Pituitary (anterior)</topic><topic>Pituitary gland</topic><topic>Pituitary Gland - metabolism</topic><topic>Pituitary Gland - pathology</topic><topic>Pituitary Neoplasms - metabolism</topic><topic>Pituitary Neoplasms - pathology</topic><topic>Pituitary tumor-transforming proteins</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Prostate cancer</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Securin</topic><topic>Senescence</topic><topic>Transfection</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chesnokova, Vera</creatorcontrib><creatorcontrib>Zonis, Svetlana</creatorcontrib><creatorcontrib>Zhou, Cuiqi</creatorcontrib><creatorcontrib>Ben-Shlomo, Anat</creatorcontrib><creatorcontrib>Wawrowsky, Kolja</creatorcontrib><creatorcontrib>Toledano, Yoel</creatorcontrib><creatorcontrib>Tong, Yunguang</creatorcontrib><creatorcontrib>Kovacs, Kalman</creatorcontrib><creatorcontrib>Scheithauer, Bernd</creatorcontrib><creatorcontrib>Melmed, Shlomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chesnokova, Vera</au><au>Zonis, Svetlana</au><au>Zhou, Cuiqi</au><au>Ben-Shlomo, Anat</au><au>Wawrowsky, Kolja</au><au>Toledano, Yoel</au><au>Tong, Yunguang</au><au>Kovacs, Kalman</au><au>Scheithauer, Bernd</au><au>Melmed, Shlomo</au><au>Fusco, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lineage-specific restraint of pituitary gonadotroph cell adenoma growth</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2011-03-25</date><risdate>2011</risdate><volume>6</volume><issue>3</issue><spage>e17924</spage><epage>e17924</epage><pages>e17924-e17924</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although pituitary adenomas are usually benign, unique trophic mechanisms restraining cell proliferation are unclear. As GH-secreting adenomas are associated with p53/p21-dependent senescence, we tested mechanisms constraining non-functioning pituitary adenoma growth. Thirty six gonadotroph-derived non-functioning pituitary adenomas all exhibited DNA damage, but undetectable p21 expression. However, these adenomas all expressed p16, and &gt;90% abundantly expressed cytoplasmic clusterin associated with induction of the Cdk inhibitor p15 in 70% of gonadotroph and in 26% of somatotroph lineage adenomas (p  =  0.006). Murine LβT2 and αT3 gonadotroph pituitary cells, and αGSU.PTTG transgenic mice with targeted gonadotroph cell adenomas also abundantly expressed clusterin and exhibited features of oncogene-induced senescence as evidenced by C/EBPβ and C/EBPδ induction. In turn, C/EBPs activated the clusterin promoter ∼5 fold, and elevated clusterin subsequently elicited p15 and p16 expression, acting to arrest murine gonadotroph cell proliferation. In contrast, specific clusterin suppression by RNAis enhanced gonadotroph proliferation. FOXL2, a tissue-specific gonadotroph lineage factor, also induced the clusterin promoter ∼3 fold in αT3 pituitary cells. As nine of 12 pituitary carcinomas were devoid of clusterin expression, this protein may limit proliferation of benign adenomatous pituitary cells. These results point to lineage-specific pathways restricting uncontrolled murine and human pituitary gonadotroph adenoma cell growth.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>21464964</pmid><doi>10.1371/journal.pone.0017924</doi><tpages>e17924</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2011-03, Vol.6 (3), p.e17924-e17924
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1292103179
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenoma
Animals
Benign
Biomarkers, Tumor - metabolism
Brain cancer
Breast cancer
Carcinoma
CCAAT-Enhancer-Binding Proteins - metabolism
Cell cycle
Cell growth
Cell Lineage
Cell Proliferation
Cellular Senescence
Clusterin
Clusterin - genetics
Clusterin - metabolism
Cyclin-Dependent Kinase Inhibitor p15 - metabolism
Cyclin-dependent kinase inhibitor p21
Cytokines
Deoxyribonucleic acid
DNA
DNA Damage
Forkhead Box Protein L2
Forkhead Transcription Factors - metabolism
Gene expression
Genetic engineering
Gonadotrophs - metabolism
Gonadotrophs - pathology
Growth
Growth hormone
Growth hormones
Humans
Immune system
Insulin-like growth factors
Kinases
Lung cancer
Medicine
Metastasis
Mice
Mice, Transgenic
Models, Biological
Neoplasm Proteins - metabolism
p53 Protein
Phenotype
Physicians
Pituitary
Pituitary (anterior)
Pituitary gland
Pituitary Gland - metabolism
Pituitary Gland - pathology
Pituitary Neoplasms - metabolism
Pituitary Neoplasms - pathology
Pituitary tumor-transforming proteins
Promoter Regions, Genetic - genetics
Prostate cancer
Proteins
Rodents
Securin
Senescence
Transfection
Transgenic animals
Transgenic mice
Tumorigenesis
Tumors
title Lineage-specific restraint of pituitary gonadotroph cell adenoma growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lineage-specific%20restraint%20of%20pituitary%20gonadotroph%20cell%20adenoma%20growth&rft.jtitle=PloS%20one&rft.au=Chesnokova,%20Vera&rft.date=2011-03-25&rft.volume=6&rft.issue=3&rft.spage=e17924&rft.epage=e17924&rft.pages=e17924-e17924&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0017924&rft_dat=%3Cgale_plos_%3EA476899533%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292103179&rft_id=info:pmid/21464964&rft_galeid=A476899533&rft_doaj_id=oai_doaj_org_article_e70866331ac6451fa8a152b8961cc456&rfr_iscdi=true