High guanine and cytosine content increases mRNA levels in mammalian cells

Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2006-06, Vol.4 (6), p.e180-e180
Hauptverfasser: Kudla, Grzegorz, Lipinski, Leszek, Caffin, Fanny, Helwak, Aleksandra, Zylicz, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e180
container_issue 6
container_start_page e180
container_title PLoS biology
container_volume 4
creator Kudla, Grzegorz
Lipinski, Leszek
Caffin, Fanny
Helwak, Aleksandra
Zylicz, Maciej
description Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells.
doi_str_mv 10.1371/journal.pbio.0040180
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1292072091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A149559370</galeid><doaj_id>oai_doaj_org_article_8355e0618ed741a6b38dabc0c6b16fe3</doaj_id><sourcerecordid>A149559370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c911t-191c2668c55a732a04a3c00ad3c4ad079e7d1ae9faeb811b709178db98b063b73</originalsourceid><addsrcrecordid>eNqVk21r1TAUx4sobk6_gWhBEHxxrzlN89A3wmWouzI2mA9vw2madrm0yV3TDvftTXer7spAJS-SnPzOP8k_OUnyHMgSqIC3Gz_2DtvltrR-SUhOQJIHySGwnC2ElOzhnfFB8iSEDSFZVmTycXIAXBDCM3mYfDqxzWXajOisMym6KtU3gw_TRHs3GDek1uneYDAh7S7OVmlrrk0bYjTtsOuwtehSbdo2PE0e1dgG82zuj5KvH95_OT5ZnJ5_XB-vThe6ABgWUIDOOJeaMRQ0Q5Ij1YRgRXWOFRGFERWgKWo0pQQoBSlAyKosZEk4LQU9Sl7udLetD2q2ISiIdyMii3Qk1jui8rhR29522N8oj1bdBnzfKOwHq1ujJGXMEA7SVCIH5CWVFZaaaF4Crw2NWu_m3cayM5WOjvTY7onurzh7qRp_rSDnlGQ8CryeBXp_NZowqM6GyTB0xo9BcUnyXAL5Kwgiy7hkLIKv_gDvN2GmGoz3tK728Xh6klQryAvGCiqmTZf3ULFVprPxB5jaxvhewpu9hNtf8n1ocAxBrT9f_Ad79u_s-bd9Nt-xuvch9Kb-9RxA1FQcPw1RU3GouThi2ou7T_k7aa4G-gO9vggu</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292072091</pqid></control><display><type>article</type><title>High guanine and cytosine content increases mRNA levels in mammalian cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kudla, Grzegorz ; Lipinski, Leszek ; Caffin, Fanny ; Helwak, Aleksandra ; Zylicz, Maciej</creator><contributor>Hurst, Laurence D.</contributor><creatorcontrib>Kudla, Grzegorz ; Lipinski, Leszek ; Caffin, Fanny ; Helwak, Aleksandra ; Zylicz, Maciej ; Hurst, Laurence D.</creatorcontrib><description>Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0040180</identifier><identifier>PMID: 16700628</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3' Untranslated Regions ; Base Composition - physiology ; Bias ; Cell Biology ; Chemical properties ; Cytosine ; Cytosine - analysis ; GC Rich Sequence ; Gene expression ; Gene Expression Regulation ; Genetic aspects ; Genetics ; Genetics/Genomics/Gene Therapy ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Guanine ; Guanine - analysis ; HeLa Cells ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Humans ; In Vitro ; Interleukin-2 - genetics ; Interleukin-2 - metabolism ; Mammals ; Messenger RNA ; Mutation ; Physiological aspects ; Promoter Regions, Genetic ; Proteins ; RNA Processing, Post-Transcriptional ; RNA, Messenger - metabolism ; Transcription, Genetic</subject><ispartof>PLoS biology, 2006-06, Vol.4 (6), p.e180-e180</ispartof><rights>COPYRIGHT 2006 Public Library of Science</rights><rights>2006 Kudla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M (2006) High Guanine and Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biol 4(6): e180. doi:10.1371/journal.pbio.0040180</rights><rights>Copyright: © 2006 Kudla et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c911t-191c2668c55a732a04a3c00ad3c4ad079e7d1ae9faeb811b709178db98b063b73</citedby><cites>FETCH-LOGICAL-c911t-191c2668c55a732a04a3c00ad3c4ad079e7d1ae9faeb811b709178db98b063b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463026/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463026/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16700628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hurst, Laurence D.</contributor><creatorcontrib>Kudla, Grzegorz</creatorcontrib><creatorcontrib>Lipinski, Leszek</creatorcontrib><creatorcontrib>Caffin, Fanny</creatorcontrib><creatorcontrib>Helwak, Aleksandra</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><title>High guanine and cytosine content increases mRNA levels in mammalian cells</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells.</description><subject>3' Untranslated Regions</subject><subject>Base Composition - physiology</subject><subject>Bias</subject><subject>Cell Biology</subject><subject>Chemical properties</subject><subject>Cytosine</subject><subject>Cytosine - analysis</subject><subject>GC Rich Sequence</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Genetics/Genomics/Gene Therapy</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Guanine</subject><subject>Guanine - analysis</subject><subject>HeLa Cells</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Humans</subject><subject>In Vitro</subject><subject>Interleukin-2 - genetics</subject><subject>Interleukin-2 - metabolism</subject><subject>Mammals</subject><subject>Messenger RNA</subject><subject>Mutation</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Proteins</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk21r1TAUx4sobk6_gWhBEHxxrzlN89A3wmWouzI2mA9vw2madrm0yV3TDvftTXer7spAJS-SnPzOP8k_OUnyHMgSqIC3Gz_2DtvltrR-SUhOQJIHySGwnC2ElOzhnfFB8iSEDSFZVmTycXIAXBDCM3mYfDqxzWXajOisMym6KtU3gw_TRHs3GDek1uneYDAh7S7OVmlrrk0bYjTtsOuwtehSbdo2PE0e1dgG82zuj5KvH95_OT5ZnJ5_XB-vThe6ABgWUIDOOJeaMRQ0Q5Ij1YRgRXWOFRGFERWgKWo0pQQoBSlAyKosZEk4LQU9Sl7udLetD2q2ISiIdyMii3Qk1jui8rhR29522N8oj1bdBnzfKOwHq1ujJGXMEA7SVCIH5CWVFZaaaF4Crw2NWu_m3cayM5WOjvTY7onurzh7qRp_rSDnlGQ8CryeBXp_NZowqM6GyTB0xo9BcUnyXAL5Kwgiy7hkLIKv_gDvN2GmGoz3tK728Xh6klQryAvGCiqmTZf3ULFVprPxB5jaxvhewpu9hNtf8n1ocAxBrT9f_Ad79u_s-bd9Nt-xuvch9Kb-9RxA1FQcPw1RU3GouThi2ou7T_k7aa4G-gO9vggu</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Kudla, Grzegorz</creator><creator>Lipinski, Leszek</creator><creator>Caffin, Fanny</creator><creator>Helwak, Aleksandra</creator><creator>Zylicz, Maciej</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20060601</creationdate><title>High guanine and cytosine content increases mRNA levels in mammalian cells</title><author>Kudla, Grzegorz ; Lipinski, Leszek ; Caffin, Fanny ; Helwak, Aleksandra ; Zylicz, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c911t-191c2668c55a732a04a3c00ad3c4ad079e7d1ae9faeb811b709178db98b063b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>3' Untranslated Regions</topic><topic>Base Composition - physiology</topic><topic>Bias</topic><topic>Cell Biology</topic><topic>Chemical properties</topic><topic>Cytosine</topic><topic>Cytosine - analysis</topic><topic>GC Rich Sequence</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Genetics/Genomics/Gene Therapy</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Guanine</topic><topic>Guanine - analysis</topic><topic>HeLa Cells</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Humans</topic><topic>In Vitro</topic><topic>Interleukin-2 - genetics</topic><topic>Interleukin-2 - metabolism</topic><topic>Mammals</topic><topic>Messenger RNA</topic><topic>Mutation</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Proteins</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudla, Grzegorz</creatorcontrib><creatorcontrib>Lipinski, Leszek</creatorcontrib><creatorcontrib>Caffin, Fanny</creatorcontrib><creatorcontrib>Helwak, Aleksandra</creatorcontrib><creatorcontrib>Zylicz, Maciej</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudla, Grzegorz</au><au>Lipinski, Leszek</au><au>Caffin, Fanny</au><au>Helwak, Aleksandra</au><au>Zylicz, Maciej</au><au>Hurst, Laurence D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High guanine and cytosine content increases mRNA levels in mammalian cells</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>4</volume><issue>6</issue><spage>e180</spage><epage>e180</epage><pages>e180-e180</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Mammalian genes are highly heterogeneous with respect to their nucleotide composition, but the functional consequences of this heterogeneity are not clear. In the previous studies, weak positive or negative correlations have been found between the silent-site guanine and cytosine (GC) content and expression of mammalian genes. However, previous studies disregarded differences in the genomic context of genes, which could potentially obscure any correlation between GC content and expression. In the present work, we directly compared the expression of GC-rich and GC-poor genes placed in the context of identical promoters and UTR sequences. We performed transient and stable transfections of mammalian cells with GC-rich and GC-poor versions of Hsp70, green fluorescent protein, and IL2 genes. The GC-rich genes were expressed several-fold to over a 100-fold more efficiently than their GC-poor counterparts. This effect was not due to different translation rates of GC-rich and GC-poor mRNA. On the contrary, the efficient expression of GC-rich genes resulted from their increased steady-state mRNA levels. mRNA degradation rates were not correlated with GC content, suggesting that efficient transcription or mRNA processing is responsible for the high expression of GC-rich genes. We conclude that silent-site GC content correlates with gene expression efficiency in mammalian cells.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>16700628</pmid><doi>10.1371/journal.pbio.0040180</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2006-06, Vol.4 (6), p.e180-e180
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_1292072091
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 3' Untranslated Regions
Base Composition - physiology
Bias
Cell Biology
Chemical properties
Cytosine
Cytosine - analysis
GC Rich Sequence
Gene expression
Gene Expression Regulation
Genetic aspects
Genetics
Genetics/Genomics/Gene Therapy
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Guanine
Guanine - analysis
HeLa Cells
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Humans
In Vitro
Interleukin-2 - genetics
Interleukin-2 - metabolism
Mammals
Messenger RNA
Mutation
Physiological aspects
Promoter Regions, Genetic
Proteins
RNA Processing, Post-Transcriptional
RNA, Messenger - metabolism
Transcription, Genetic
title High guanine and cytosine content increases mRNA levels in mammalian cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20guanine%20and%20cytosine%20content%20increases%20mRNA%20levels%20in%20mammalian%20cells&rft.jtitle=PLoS%20biology&rft.au=Kudla,%20Grzegorz&rft.date=2006-06-01&rft.volume=4&rft.issue=6&rft.spage=e180&rft.epage=e180&rft.pages=e180-e180&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0040180&rft_dat=%3Cgale_plos_%3EA149559370%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292072091&rft_id=info:pmid/16700628&rft_galeid=A149559370&rft_doaj_id=oai_doaj_org_article_8355e0618ed741a6b38dabc0c6b16fe3&rfr_iscdi=true