A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis
The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2008-09, Vol.6 (9), p.e235-e235 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e235 |
---|---|
container_issue | 9 |
container_start_page | e235 |
container_title | PLoS biology |
container_volume | 6 |
creator | Savage, Natasha Saint Walker, Tom Wieckowski, Yana Schiefelbein, John Dolan, Liam Monk, Nicholas A M |
description | The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition. |
doi_str_mv | 10.1371/journal.pbio.0060235 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1291954329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A202126628</galeid><doaj_id>oai_doaj_org_article_0ebf79fa861640ebbd25dff88a2b8e2a</doaj_id><sourcerecordid>A202126628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c790t-1ca629ba5856c79dc5072ca14759e3922a21298416092dc7acb1a5a5836f4e233</originalsourceid><addsrcrecordid>eNqVk1-L1DAUxYso7rr6DUQDguDDjEnatMnLQh3WdWBwZfzzGm7TdCZD29QkXRS_vBmn6o4sqPQhzc3vnDbncpPkMcFzkhbk5c6Orod2PlTGzjHOMU3ZneSUsIzNCs7Z3RvvJ8kD73cYUyoov5-cEM5JTnJ2mnwrUTeGEVrkx2GwLqBOqy30xncobJ0dN1tk-qCd0m07tuBQZ691p_uAbIMW5bv1cnGBoK_R5ap8tS5TpKBHA4Qo6aODRqWDytR28MYjZ21AejC1dp3xD5N7DbReP5rWs-Tj64sPizez1dXlclGuZqoQOMyIgpyKChhneazUiuGCKiBZwYROBaVACRU8IzkWtFYFqIoAi3iaN5mmaXqWPD34Dq31csrNyygigmUpFZFYHojawk4OznTgvkoLRv4oWLeR4IJRrZZYV00hGuAxvyxuqpqyumk4B1pxTSF6nU9fG6tO1ypG5aA9Mj0-6c1Wbuy1pIyl8RbR4Plk4OznUfsgY1b7-KHXdvQyFzmNvRZ_BYnIMCtYEcFnf4C3hzBRG4j3NH1j4--pvaUsKY4Z5znlkZrfQsWn1p1RtteNifUjwYsjQWSC_hI2MHovl-_X_8G-_Xf26tMxmx1Y5az3Tje_2kGw3E_Tz0DkfprkNE1R9uRmK3-LpvFJvwMm1hmh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291954329</pqid></control><display><type>article</type><title>A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Savage, Natasha Saint ; Walker, Tom ; Wieckowski, Yana ; Schiefelbein, John ; Dolan, Liam ; Monk, Nicholas A M</creator><contributor>Weigel, Detlef</contributor><creatorcontrib>Savage, Natasha Saint ; Walker, Tom ; Wieckowski, Yana ; Schiefelbein, John ; Dolan, Liam ; Monk, Nicholas A M ; Weigel, Detlef</creatorcontrib><description>The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0060235</identifier><identifier>PMID: 18816165</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Arabidopsis ; Arabidopsis - anatomy & histology ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cell Lineage ; Computational Biology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Gene Regulatory Networks ; Hypotheses ; Kinases ; Mathematical models ; Mathematics ; Models, Biological ; Morphogenesis - physiology ; Plant Biology ; Plant Epidermis - anatomy & histology ; Plant Epidermis - physiology ; Plant Roots - cytology ; Plant Roots - metabolism ; Plants, Genetically Modified - cytology ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Proteins ; Proto-Oncogene Proteins c-myb - genetics ; Proto-Oncogene Proteins c-myb - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Transcription, Genetic</subject><ispartof>PLoS biology, 2008-09, Vol.6 (9), p.e235-e235</ispartof><rights>COPYRIGHT 2008 Public Library of Science</rights><rights>2008 Savage et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Savage NS, Walker T, Wieckowski Y, Schiefelbein J, Dolan L, et al. (2008) A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis. PLoS Biol 6(9): e235. doi:10.1371/journal.pbio.0060235</rights><rights>2008 Savage et al. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c790t-1ca629ba5856c79dc5072ca14759e3922a21298416092dc7acb1a5a5836f4e233</citedby><cites>FETCH-LOGICAL-c790t-1ca629ba5856c79dc5072ca14759e3922a21298416092dc7acb1a5a5836f4e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553841/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553841/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18816165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Weigel, Detlef</contributor><creatorcontrib>Savage, Natasha Saint</creatorcontrib><creatorcontrib>Walker, Tom</creatorcontrib><creatorcontrib>Wieckowski, Yana</creatorcontrib><creatorcontrib>Schiefelbein, John</creatorcontrib><creatorcontrib>Dolan, Liam</creatorcontrib><creatorcontrib>Monk, Nicholas A M</creatorcontrib><title>A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.</description><subject>Arabidopsis</subject><subject>Arabidopsis - anatomy & histology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cell Lineage</subject><subject>Computational Biology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Regulatory Networks</subject><subject>Hypotheses</subject><subject>Kinases</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Morphogenesis - physiology</subject><subject>Plant Biology</subject><subject>Plant Epidermis - anatomy & histology</subject><subject>Plant Epidermis - physiology</subject><subject>Plant Roots - cytology</subject><subject>Plant Roots - metabolism</subject><subject>Plants, Genetically Modified - cytology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myb - genetics</subject><subject>Proto-Oncogene Proteins c-myb - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Transcription, Genetic</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1-L1DAUxYso7rr6DUQDguDDjEnatMnLQh3WdWBwZfzzGm7TdCZD29QkXRS_vBmn6o4sqPQhzc3vnDbncpPkMcFzkhbk5c6Orod2PlTGzjHOMU3ZneSUsIzNCs7Z3RvvJ8kD73cYUyoov5-cEM5JTnJ2mnwrUTeGEVrkx2GwLqBOqy30xncobJ0dN1tk-qCd0m07tuBQZ691p_uAbIMW5bv1cnGBoK_R5ap8tS5TpKBHA4Qo6aODRqWDytR28MYjZ21AejC1dp3xD5N7DbReP5rWs-Tj64sPizez1dXlclGuZqoQOMyIgpyKChhneazUiuGCKiBZwYROBaVACRU8IzkWtFYFqIoAi3iaN5mmaXqWPD34Dq31csrNyygigmUpFZFYHojawk4OznTgvkoLRv4oWLeR4IJRrZZYV00hGuAxvyxuqpqyumk4B1pxTSF6nU9fG6tO1ypG5aA9Mj0-6c1Wbuy1pIyl8RbR4Plk4OznUfsgY1b7-KHXdvQyFzmNvRZ_BYnIMCtYEcFnf4C3hzBRG4j3NH1j4--pvaUsKY4Z5znlkZrfQsWn1p1RtteNifUjwYsjQWSC_hI2MHovl-_X_8G-_Xf26tMxmx1Y5az3Tje_2kGw3E_Tz0DkfprkNE1R9uRmK3-LpvFJvwMm1hmh</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Savage, Natasha Saint</creator><creator>Walker, Tom</creator><creator>Wieckowski, Yana</creator><creator>Schiefelbein, John</creator><creator>Dolan, Liam</creator><creator>Monk, Nicholas A M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope></search><sort><creationdate>20080901</creationdate><title>A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis</title><author>Savage, Natasha Saint ; Walker, Tom ; Wieckowski, Yana ; Schiefelbein, John ; Dolan, Liam ; Monk, Nicholas A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c790t-1ca629ba5856c79dc5072ca14759e3922a21298416092dc7acb1a5a5836f4e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - anatomy & histology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cell Lineage</topic><topic>Computational Biology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Regulatory Networks</topic><topic>Hypotheses</topic><topic>Kinases</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Morphogenesis - physiology</topic><topic>Plant Biology</topic><topic>Plant Epidermis - anatomy & histology</topic><topic>Plant Epidermis - physiology</topic><topic>Plant Roots - cytology</topic><topic>Plant Roots - metabolism</topic><topic>Plants, Genetically Modified - cytology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myb - genetics</topic><topic>Proto-Oncogene Proteins c-myb - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savage, Natasha Saint</creatorcontrib><creatorcontrib>Walker, Tom</creatorcontrib><creatorcontrib>Wieckowski, Yana</creatorcontrib><creatorcontrib>Schiefelbein, John</creatorcontrib><creatorcontrib>Dolan, Liam</creatorcontrib><creatorcontrib>Monk, Nicholas A M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savage, Natasha Saint</au><au>Walker, Tom</au><au>Wieckowski, Yana</au><au>Schiefelbein, John</au><au>Dolan, Liam</au><au>Monk, Nicholas A M</au><au>Weigel, Detlef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>6</volume><issue>9</issue><spage>e235</spage><epage>e235</epage><pages>e235-e235</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>18816165</pmid><doi>10.1371/journal.pbio.0060235</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2008-09, Vol.6 (9), p.e235-e235 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1291954329 |
source | PLoS; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Arabidopsis Arabidopsis - anatomy & histology Arabidopsis - genetics Arabidopsis - physiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Cell Lineage Computational Biology DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Gene Regulatory Networks Hypotheses Kinases Mathematical models Mathematics Models, Biological Morphogenesis - physiology Plant Biology Plant Epidermis - anatomy & histology Plant Epidermis - physiology Plant Roots - cytology Plant Roots - metabolism Plants, Genetically Modified - cytology Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Proteins Proto-Oncogene Proteins c-myb - genetics Proto-Oncogene Proteins c-myb - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Transcription, Genetic |
title | A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mutual%20support%20mechanism%20through%20intercellular%20movement%20of%20CAPRICE%20and%20GLABRA3%20can%20pattern%20the%20Arabidopsis%20root%20epidermis&rft.jtitle=PLoS%20biology&rft.au=Savage,%20Natasha%20Saint&rft.date=2008-09-01&rft.volume=6&rft.issue=9&rft.spage=e235&rft.epage=e235&rft.pages=e235-e235&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0060235&rft_dat=%3Cgale_plos_%3EA202126628%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291954329&rft_id=info:pmid/18816165&rft_galeid=A202126628&rft_doaj_id=oai_doaj_org_article_0ebf79fa861640ebbd25dff88a2b8e2a&rfr_iscdi=true |