Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system
The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian C...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2006-07, Vol.4 (7), p.e225-e225 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e225 |
---|---|
container_issue | 7 |
container_start_page | e225 |
container_title | PLoS biology |
container_volume | 4 |
creator | Pasini, Andrea Amiel, Aldine Rothbächer, Ute Roure, Agnès Lemaire, Patrick Darras, Sébastien |
description | The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin. |
doi_str_mv | 10.1371/journal.pbio.0040225 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1291896205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A149559395</galeid><doaj_id>oai_doaj_org_article_6c99ce0d4e01406a904bb2a56eab300b</doaj_id><sourcerecordid>A149559395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c828t-8cb474760373c0d059dc8d6dc04b7af7a0e910439124146a3c6ac519ad12d293</originalsourceid><addsrcrecordid>eNqVk-Fr1DAYxosobk7_A9GCIOzDnUmatokfhGM4d3A40OHXkCZv24w2OZP29P57c7s6d2Ogkg8Jb37Pk-QJb5K8xGiOsxK_u3ajt7Kbryvj5ghRREj-KDnGOc1nJWP54zvro-RZCNcoIpywp8kRLkpWYlQcJz_One_lYJxNXZ0OLaQyKKONtCmsjYa42aUBbHB-m1oYvbPhfWpsME07hLgY3I3KedOYWw_VOq_lAOkavFm34KOJBb9xY0jDNgzQP0-e1LIL8GKaT5Kr849XZxez1eWn5dliNVOMsGHGVEVLWhYoKzOFNMq5VkwXWiFalbIuJQKOEc04JhTTQmaqkCrHXGpMNOHZSfJ6b7vuXBBTZEFgwjHjBUF5JJZ7Qjt5Ldbe9NJvhZNG3BScb4T0g1EdiEJxrgBpCghTVEgeL1ERmRcgqwyhKnp9mE4bqx60AjvElx-YHu5Y04rGbQSmDOckiwane4P2nuxisRK7GkKIMZ5nGxzZt9Nh3n0fIQyiN0FB10kLMWdRMMyjb_FXkCDKGcFlBN_cAx8ObKIaGTMxtnbxKWpnKRaY8jznGd9R8weoODT0RjkLtYn1A8HpgSAyA_wcGjmGIJZfv_wH-_nf2ctvhyzds8q7EDzUt3-Akdg13e9AxK7pxNR0Ufbq7rf_EU1dlv0CFiAnPg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1291896205</pqid></control><display><type>article</type><title>Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pasini, Andrea ; Amiel, Aldine ; Rothbächer, Ute ; Roure, Agnès ; Lemaire, Patrick ; Darras, Sébastien</creator><contributor>Patel, Nipam</contributor><creatorcontrib>Pasini, Andrea ; Amiel, Aldine ; Rothbächer, Ute ; Roure, Agnès ; Lemaire, Patrick ; Darras, Sébastien ; Patel, Nipam</creatorcontrib><description>The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.0040225</identifier><identifier>PMID: 16787106</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquisitions & mergers ; Animals ; Ascidians (Sea Squirts) ; Body Patterning ; Bone Morphogenetic Proteins - metabolism ; Cell adhesion & migration ; Chordata ; Ciona intestinalis ; Ciona intestinalis - embryology ; Development ; Development Biology ; Embryology and Organogenesis ; Epidermis - embryology ; Epidermis - innervation ; Evolution ; Fibroblast Growth Factors - metabolism ; Genetic aspects ; Growth ; Humans ; Intracellular Signaling Peptides and Proteins ; Kinases ; Life Sciences ; Marine ; Membrane Proteins - metabolism ; Nerves, Peripheral ; Neural Crest - embryology ; Neurons ; Neurons, Afferent - cytology ; Neurons, Afferent - metabolism ; Peripheral Nervous System - embryology ; Phylogenetics ; Physiological aspects ; Plasmids ; Proteins ; Receptors, Notch - metabolism ; Recombinant Proteins ; Signal Transduction ; Studies ; Vertebrates ; Xenopus</subject><ispartof>PLoS biology, 2006-07, Vol.4 (7), p.e225-e225</ispartof><rights>COPYRIGHT 2006 Public Library of Science</rights><rights>2006 Pasini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, et al. (2006) Formation of the Ascidian Epidermal Sensory Neurons: Insights into the Origin of the Chordate Peripheral Nervous System. PLoS Biol 4(7): e225. doi:10.1371/journal.pbio.0040225</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright: © 2006 Pasini et al. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c828t-8cb474760373c0d059dc8d6dc04b7af7a0e910439124146a3c6ac519ad12d293</citedby><cites>FETCH-LOGICAL-c828t-8cb474760373c0d059dc8d6dc04b7af7a0e910439124146a3c6ac519ad12d293</cites><orcidid>0000-0002-0590-0062 ; 0000-0002-3321-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1481523/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1481523/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16787106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00088953$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Patel, Nipam</contributor><creatorcontrib>Pasini, Andrea</creatorcontrib><creatorcontrib>Amiel, Aldine</creatorcontrib><creatorcontrib>Rothbächer, Ute</creatorcontrib><creatorcontrib>Roure, Agnès</creatorcontrib><creatorcontrib>Lemaire, Patrick</creatorcontrib><creatorcontrib>Darras, Sébastien</creatorcontrib><title>Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.</description><subject>Acquisitions & mergers</subject><subject>Animals</subject><subject>Ascidians (Sea Squirts)</subject><subject>Body Patterning</subject><subject>Bone Morphogenetic Proteins - metabolism</subject><subject>Cell adhesion & migration</subject><subject>Chordata</subject><subject>Ciona intestinalis</subject><subject>Ciona intestinalis - embryology</subject><subject>Development</subject><subject>Development Biology</subject><subject>Embryology and Organogenesis</subject><subject>Epidermis - embryology</subject><subject>Epidermis - innervation</subject><subject>Evolution</subject><subject>Fibroblast Growth Factors - metabolism</subject><subject>Genetic aspects</subject><subject>Growth</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Membrane Proteins - metabolism</subject><subject>Nerves, Peripheral</subject><subject>Neural Crest - embryology</subject><subject>Neurons</subject><subject>Neurons, Afferent - cytology</subject><subject>Neurons, Afferent - metabolism</subject><subject>Peripheral Nervous System - embryology</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Receptors, Notch - metabolism</subject><subject>Recombinant Proteins</subject><subject>Signal Transduction</subject><subject>Studies</subject><subject>Vertebrates</subject><subject>Xenopus</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk-Fr1DAYxosobk7_A9GCIOzDnUmatokfhGM4d3A40OHXkCZv24w2OZP29P57c7s6d2Ogkg8Jb37Pk-QJb5K8xGiOsxK_u3ajt7Kbryvj5ghRREj-KDnGOc1nJWP54zvro-RZCNcoIpywp8kRLkpWYlQcJz_One_lYJxNXZ0OLaQyKKONtCmsjYa42aUBbHB-m1oYvbPhfWpsME07hLgY3I3KedOYWw_VOq_lAOkavFm34KOJBb9xY0jDNgzQP0-e1LIL8GKaT5Kr849XZxez1eWn5dliNVOMsGHGVEVLWhYoKzOFNMq5VkwXWiFalbIuJQKOEc04JhTTQmaqkCrHXGpMNOHZSfJ6b7vuXBBTZEFgwjHjBUF5JJZ7Qjt5Ldbe9NJvhZNG3BScb4T0g1EdiEJxrgBpCghTVEgeL1ERmRcgqwyhKnp9mE4bqx60AjvElx-YHu5Y04rGbQSmDOckiwane4P2nuxisRK7GkKIMZ5nGxzZt9Nh3n0fIQyiN0FB10kLMWdRMMyjb_FXkCDKGcFlBN_cAx8ObKIaGTMxtnbxKWpnKRaY8jznGd9R8weoODT0RjkLtYn1A8HpgSAyA_wcGjmGIJZfv_wH-_nf2ctvhyzds8q7EDzUt3-Akdg13e9AxK7pxNR0Ufbq7rf_EU1dlv0CFiAnPg</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Pasini, Andrea</creator><creator>Amiel, Aldine</creator><creator>Rothbächer, Ute</creator><creator>Roure, Agnès</creator><creator>Lemaire, Patrick</creator><creator>Darras, Sébastien</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-0590-0062</orcidid><orcidid>https://orcid.org/0000-0002-3321-7244</orcidid></search><sort><creationdate>20060701</creationdate><title>Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system</title><author>Pasini, Andrea ; Amiel, Aldine ; Rothbächer, Ute ; Roure, Agnès ; Lemaire, Patrick ; Darras, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c828t-8cb474760373c0d059dc8d6dc04b7af7a0e910439124146a3c6ac519ad12d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acquisitions & mergers</topic><topic>Animals</topic><topic>Ascidians (Sea Squirts)</topic><topic>Body Patterning</topic><topic>Bone Morphogenetic Proteins - metabolism</topic><topic>Cell adhesion & migration</topic><topic>Chordata</topic><topic>Ciona intestinalis</topic><topic>Ciona intestinalis - embryology</topic><topic>Development</topic><topic>Development Biology</topic><topic>Embryology and Organogenesis</topic><topic>Epidermis - embryology</topic><topic>Epidermis - innervation</topic><topic>Evolution</topic><topic>Fibroblast Growth Factors - metabolism</topic><topic>Genetic aspects</topic><topic>Growth</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Membrane Proteins - metabolism</topic><topic>Nerves, Peripheral</topic><topic>Neural Crest - embryology</topic><topic>Neurons</topic><topic>Neurons, Afferent - cytology</topic><topic>Neurons, Afferent - metabolism</topic><topic>Peripheral Nervous System - embryology</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Receptors, Notch - metabolism</topic><topic>Recombinant Proteins</topic><topic>Signal Transduction</topic><topic>Studies</topic><topic>Vertebrates</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasini, Andrea</creatorcontrib><creatorcontrib>Amiel, Aldine</creatorcontrib><creatorcontrib>Rothbächer, Ute</creatorcontrib><creatorcontrib>Roure, Agnès</creatorcontrib><creatorcontrib>Lemaire, Patrick</creatorcontrib><creatorcontrib>Darras, Sébastien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasini, Andrea</au><au>Amiel, Aldine</au><au>Rothbächer, Ute</au><au>Roure, Agnès</au><au>Lemaire, Patrick</au><au>Darras, Sébastien</au><au>Patel, Nipam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>4</volume><issue>7</issue><spage>e225</spage><epage>e225</epage><pages>e225-e225</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The vertebrate peripheral nervous system (PNS) originates from neural crest and placodes. While its developmental origin is the object of intense studies, little is known concerning its evolutionary history. To address this question, we analyzed the formation of the larval tail PNS in the ascidian Ciona intestinalis. The tail PNS of Ciona is made of sensory neurons located within the epidermis midlines and extending processes in the overlying tunic median fin. We show that each midline corresponds to a single longitudinal row of epidermal cells and neurons sharing common progenitors. This simple organization is observed throughout the tail epidermis, which is made of only eight single-cell rows, each expressing a specific genetic program. We next demonstrate that the epidermal neurons are specified in two consecutive steps. During cleavage and gastrula stages, the dorsal and ventral midlines are independently induced by FGF9/16/20 and the BMP ligand ADMP, respectively. Subsequently, Delta/Notch-mediated lateral inhibition controls the number of neurons formed within these neurogenic regions. These results provide a comprehensive overview of PNS formation in ascidian and uncover surprising similarities between the fate maps and embryological mechanisms underlying formation of ascidian neurogenic epidermis midlines and the vertebrate median fin.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>16787106</pmid><doi>10.1371/journal.pbio.0040225</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0590-0062</orcidid><orcidid>https://orcid.org/0000-0002-3321-7244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2006-07, Vol.4 (7), p.e225-e225 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_1291896205 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Acquisitions & mergers Animals Ascidians (Sea Squirts) Body Patterning Bone Morphogenetic Proteins - metabolism Cell adhesion & migration Chordata Ciona intestinalis Ciona intestinalis - embryology Development Development Biology Embryology and Organogenesis Epidermis - embryology Epidermis - innervation Evolution Fibroblast Growth Factors - metabolism Genetic aspects Growth Humans Intracellular Signaling Peptides and Proteins Kinases Life Sciences Marine Membrane Proteins - metabolism Nerves, Peripheral Neural Crest - embryology Neurons Neurons, Afferent - cytology Neurons, Afferent - metabolism Peripheral Nervous System - embryology Phylogenetics Physiological aspects Plasmids Proteins Receptors, Notch - metabolism Recombinant Proteins Signal Transduction Studies Vertebrates Xenopus |
title | Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20the%20ascidian%20epidermal%20sensory%20neurons:%20insights%20into%20the%20origin%20of%20the%20chordate%20peripheral%20nervous%20system&rft.jtitle=PLoS%20biology&rft.au=Pasini,%20Andrea&rft.date=2006-07-01&rft.volume=4&rft.issue=7&rft.spage=e225&rft.epage=e225&rft.pages=e225-e225&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.0040225&rft_dat=%3Cgale_plos_%3EA149559395%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1291896205&rft_id=info:pmid/16787106&rft_galeid=A149559395&rft_doaj_id=oai_doaj_org_article_6c99ce0d4e01406a904bb2a56eab300b&rfr_iscdi=true |